Type: | Package |
Title: | Automatic Linear and Logistic Regression and Survival Analysis |
Version: | 0.3.3 |
URL: | https://github.com/cardiomoon/autoReg, https://cardiomoon.github.io/autoReg/ |
BugReports: | https://github.com/cardiomoon/autoReg/issues |
Description: | Make summary tables for descriptive statistics and select explanatory variables automatically in various regression models. Support linear models, generalized linear models and cox-proportional hazard models. Generate publication-ready tables summarizing result of regression analysis and plots. The tables and plots can be exported in "HTML", "pdf('LaTex')", "docx('MS Word')" and "pptx('MS Powerpoint')" documents. |
License: | GPL-3 |
LazyData: | true |
Encoding: | UTF-8 |
Imports: | moonBook(≥ 0.3.0), nortest, dplyr, crayon, stringr, tidyr, purrr, survival, mice, officer, flextable, rlang, patchwork, ggplot2, boot, broom, tidycmprsk, scales, maxstat, pammtools |
Suggests: | knitr, finalfit, lme4, TH.data, rmarkdown, survminer, asaur, cmprsk, PairedData |
RoxygenNote: | 7.2.3 |
VignetteBuilder: | knitr |
Depends: | R (≥ 2.10) |
NeedsCompilation: | no |
Packaged: | 2023-11-14 01:31:21 UTC; cardiomoon |
Author: | Keon-Woong Moon [aut, cre] |
Maintainer: | Keon-Woong Moon <cardiomoon@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2023-11-14 05:53:27 UTC |
Draw an Observed vs Expected plot
Description
Draw an Observed vs Expected plot
Usage
OEplot(fit, xnames = NULL, no = 3, maxy.lev = 5, median = TRUE)
Arguments
fit |
An object of class "coxph" |
xnames |
Character Names of explanatory variable to plot |
no |
integer Number of groups to be made |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
median |
logical |
Value
No return value, called for side effects
Examples
library(survival)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~rx+age+sex,data=colon)
OEplot(fit)
OEplot(fit,xnames="sex")
## Not run:
fit=coxph(Surv(time,status)~age,data=colon)
OEplot(fit)
fit=coxph(Surv(time,status)~logWBC,data=anderson)
OEplot(fit)
## End(Not run)
Add model summary to an object of class gaze
Description
Add model summary to an object of class gaze
Usage
addFitSummary(df, fit, statsname = "")
Arguments
df |
An object of class "gaze" or "autoReg" |
fit |
An object of class "glm" or "lm" or "crr" |
statsname |
character Name of statistics |
Value
addFitSummary returns an object of gaze
or autoReg
- the same class as df
Examples
require(survival)
require(dplyr)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
df=autoReg(fit,uni=FALSE)
final=fit2final(fit)
df %>% addFitSummary(final,statsname="HR (final)") %>% myft()
Add labels to data
Description
Add labels to data
Usage
addLabelData(data)
Arguments
data |
A data.frame |
Value
A data.frame
Examples
addLabelData(data.frame(ph.ecog=0:3,sex=c(1,2,2,2),age=c(20,30,40,70)))
Draw an expected plot
Description
Draw an expected plot
Usage
adjustedPlot(
fit,
xnames = NULL,
pred.values = list(),
newdata = NULL,
maxy.lev = 5,
median = TRUE,
facet = NULL,
se = FALSE,
mark.time = FALSE,
show.median = FALSE,
type = "ggplot",
...
)
Arguments
fit |
An object of class "coxph" or "survreg" |
xnames |
Character Names of explanatory variable to plot |
pred.values |
A list A list of predictor values |
newdata |
A data.frame or NULL |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
median |
Logical |
facet |
Character Name of facet variable |
se |
logical Whether or not show se |
mark.time |
logical Whether or not mark time |
show.median |
logical |
type |
Character plot type |
... |
further arguments to be passed to plot.survfit |
Value
A ggplot or no return value(called for side effects)
Examples
library(survival)
fit=coxph(Surv(time,status)~rx+logWBC,data=anderson)
adjustedPlot(fit)
adjustedPlot(fit,xnames="rx",se=TRUE,type="plot")
adjustedPlot(fit,xnames="rx",se=TRUE)
## Not run:
anderson$WBCgroup=ifelse(anderson$logWBC<=2.73,0,1)
anderson$WBCgroup=factor(anderson$WBCgroup,labels=c("low","high"))
anderson$rx=factor(anderson$rx,labels=c("treatment","control"))
fit=coxph(Surv(time,status)~rx,data=anderson)
adjustedPlot(fit,xnames=c("rx"),show.median=TRUE)
fit=coxph(Surv(time,status)~rx*WBCgroup,data=anderson)
adjustedPlot(fit,xnames=c("rx","WBCgroup"),show.median=TRUE)
adjustedPlot(fit,xnames=c("rx","WBCgroup"),facet="WBCgroup",show.median=TRUE)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~rx+strata(sex)+age+differ,data =colon)
adjustedPlot(fit,xnames=c("sex"))
adjustedPlot(fit,xnames=c("sex"),pred.values=list(age=58,differ=3))
adjustedPlot(fit,xnames=c("sex","rx"),facet="sex")
adjustedPlot(fit,xnames=c("rx","sex","differ"),facet=c("sex","rx"),se=TRUE)
fit <- coxph(Surv(start, stop, event) ~ rx + number + size+ cluster(id), data = bladder2)
adjustedPlot(fit,xnames=c("rx","number","size"),facet=c("rx","size"),maxy.lev=8)
## End(Not run)
Draw predicted survival curve with an object survreg
Description
Draw predicted survival curve with an object survreg
Usage
adjustedPlot.survreg(
x,
xnames = NULL,
pred.values = list(),
maxy.lev = 5,
median = TRUE,
newdata = NULL,
addCox = FALSE,
legend.position = "topright",
xlim = NULL,
ylim = NULL
)
Arguments
x |
An object of class survreg |
xnames |
Character Names of explanatory variable to plot |
pred.values |
A list A list of predictor values |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
median |
Logical |
newdata |
A data.frame or NULL |
addCox |
logical Whether or not add KM |
legend.position |
Character Default value is "topright" |
xlim |
numeric |
ylim |
numeric |
Value
No return value, called for side effects
Examples
library(survival)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
## Not run:
x=survreg(Surv(time, status) ~ sex, data=lung,dist="weibull")
adjustedPlot(x,addCox=TRUE)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x)
x=survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung, dist="weibull")
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
adjustedPlot(x,pred.values=list(age=c(20,40,60,80),sex=2,ph.ecog=3),addCox=TRUE)
newdata=data.frame(ph.ecog=0:3,sex=c(1,2,2,2),age=c(20,40,60,80))
adjustedPlot(x,newdata=newdata,addCox=TRUE)
## End(Not run)
Draw a survfitted plot
Description
Draw a survfitted plot
Usage
adjustedPlot2(fit, se = FALSE, mark.time = FALSE)
Arguments
fit |
An object of class coxph or survfit |
se |
logical Whether or not show se |
mark.time |
logical Whether or not mark time |
Value
a ggplot
Examples
library(survival)
fit=coxph(Surv(time,status)~rx+logWBC,data=anderson)
plot(survfit(fit),conf.int=TRUE)
adjustedPlot2(fit,se=TRUE)
Draw predicted survival curve as a ggplot with an object survreg
Description
Draw predicted survival curve as a ggplot with an object survreg
Usage
adjustedPlot2.survreg(
x,
xnames = NULL,
pred.values = list(),
maxy.lev = 5,
newdata = NULL,
addCox = FALSE,
autovar = TRUE,
legend.position = NULL,
facet = NULL
)
Arguments
x |
An object of class survreg |
xnames |
Character Names of explanatory variable to plot |
pred.values |
A list A list of predictor values |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
newdata |
A data.frame or NULL |
addCox |
logical Whether or not add KM |
autovar |
logical |
legend.position |
Character Default value is "topright" |
facet |
Character name(s) of facet variable(s) |
Value
A ggplot
Examples
library(survival)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x,type="plot")
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
## Not run:
x=survreg(Surv(time, status) ~ sex, data=lung,dist="weibull")
adjustedPlot(x,addCox=TRUE)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
adjustedPlot(x,addCox=TRUE)
x=survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung, dist="weibull")
pred.values=list(ph.ecog=0:3,sex=1:2,age=c(20,40,60,80))
adjustedPlot(x)
adjustedPlot(x,addCox=TRUE)
adjustedPlot(x,addCox=TRUE,xnames=c("ph.ecog","sex"),facet="sex")
adjustedPlot(x,pred.values=pred.values,addCox=TRUE,legend.position="top")+xlim(c(1,1000))
adjustedPlot(x,pred.values=pred.values,xnames=c("ph.ecog","sex","age"),facet=c("ph.ecog","sex"))
adjustedPlot(x,pred.values=pred.values,xnames=c("ph.ecog","sex","age"),facet=c("age","sex"))
adjustedPlot(x,pred.values=pred.values,addCox=TRUE)
adjustedPlot(x,addCox=TRUE)
adjustedPlot(x,pred.values=list(age=c(20,40,60,80),sex=1,ph.ecog=3),addCox=TRUE)
## End(Not run)
Remission survival times of 42 leukemia patients
Description
A dataset containing survival time of 42 leukemia patients
Usage
anderson
Format
A data.frame with 42 rows and 5 variables
- time
survival time in weeks
- status
censoring status 1=failure 0=censored
- sex
sex 0=Female 1=Male
- logWBC
log white blood cell count
- rx
treatment status 1=control 0 =treatment
Source
David G. Kleinbaum and Mitchel Klein. Survival Analysis. A Self-Learning Text(3rd ed)(Springer,2012) ISBN: 978-1441966452
Remission survival times of 42 leukemia patients
Description
A dataset containing survival time of 42 leukemia patients This data is the same data with anderson, but sex and rx variable are factors not numeric
Usage
anderson1
Format
A data.frame with 42 rows and 5 variables
- time
survival time in weeks
- status
censoring status 1=failure 0=censored
- sex
sex "Female" or "Male
- logWBC
log white blood cell count
- rx
treatment status "treatment" or "control"
Source
David G. Kleinbaum and Mitchel Klein. Survival Analysis. A Self-Learning Text(3rd ed)(Springer,2012) ISBN: 978-1441966452
Remission survival times of 31 leukemia patients
Description
This data is subdata of anderson with medium(2.3 < logWBC <= 2.96) and high WBC count(logWBC > 2.96)
Usage
anderson2
Format
A data.frame with 31 rows and 6 variables
- time
survival time in weeks
- status
censoring status 1=failure 0=censored
- sex
sex 0=Female 1=Male
- logWBC
log white blood cell count
- rx
treatment status 1=control 0 =treatment
- WBCCAT
WBC count group 1=medium 2=high
Details
A dataset containing survival time of 31 leukemia patients
Source
David G. Kleinbaum and Mitchel Klein. Survival Analysis. A Self-Learning Text(3rd ed)(Springer,2012) ISBN: 978-1441966452
Convert data.frame to printable form
Description
Calculate character length and apply all data
Usage
as_printable(
data,
align.first = "left",
align.chr = "right",
align.num = "right"
)
Arguments
data |
A data.frame |
align.first |
character Alignment of first variable |
align.chr |
character Alignment of character variable |
align.num |
character Alignment of numeric variable |
Value
A data.frame
Examples
as_printable(mtcars)
as_printable(iris)
Perform univariable and multivariable regression and stepwise backward regression automatically
Description
Perform univariable and multivariable regression and stepwise backward regression automatically
Usage
autoReg(x, ...)
## S3 method for class 'lm'
autoReg(x, ...)
## S3 method for class 'glm'
autoReg(x, ...)
## S3 method for class 'coxph'
autoReg(x, ...)
## S3 method for class 'survreg'
autoReg(x, ...)
Arguments
x |
An object of class lm, glm or coxph |
... |
Further arguments |
Value
autoReg returns an object of class "autoReg" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
- attr(*,"model")
name of model. One of "lm","glm" or "coxph"
Methods (by class)
-
autoReg(lm)
: S3 method for a class lm -
autoReg(glm)
: S3 method for a class glm -
autoReg(coxph)
: S3 method for a class coxph -
autoReg(survreg)
: S3 method for a class survreg
Examples
data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
autoReg(fit)
autoReg(fit,uni=FALSE,final=TRUE)
autoReg(fit,uni=FALSE,imputed=TRUE)
fit=lm(mpg~wt*hp+am+I(wt^2),data=mtcars)
autoReg(fit,final=TRUE)
autoReg(fit,imputed=TRUE)
perform automatic regression for a class of coxph
Description
perform automatic regression for a class of coxph
Usage
autoRegCox(
x,
threshold = 0.2,
uni = FALSE,
multi = TRUE,
final = FALSE,
imputed = FALSE,
keepstats = FALSE,
...
)
Arguments
x |
An object of class coxph |
threshold |
numeric |
uni |
logical whether or not perform univariable regression |
multi |
logical whether or not perform multivariable regression |
final |
logical whether or not perform stepwise backward elimination |
imputed |
logical whether or not perform multiple imputation |
keepstats |
logical whether or not keep statistic |
... |
Further arguments to be passed to gaze() |
Value
autoRegCox returns an object of class "autoReg" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
- attr(*,"model")
name of model. One of "lm","glm" or "coxph"
Examples
require(survival)
require(dplyr)
data(cancer)
fit=coxph(Surv(time,status==2)~log(bili)+age+cluster(edema),data=pbc)
autoReg(fit)
fit=coxph(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
autoReg(fit)
autoReg(fit,uni=TRUE,threshold=1)
autoReg(fit,uni=TRUE,final=TRUE) %>% myft()
data(colon_s,package="finalfit")
fit=coxph(Surv(time,status)~age.factor+sex.factor+obstruct.factor+perfor.factor,data=colon_s)
autoReg(fit,uni=TRUE,threshold=1)
autoReg(fit,uni=TRUE,imputed=TRUE)
Perform univariable and multivariable regression and stepwise backward regression automatically
Description
Perform univariable and multivariable regression and stepwise backward regression automatically
Usage
autoReg_sub(
fit,
threshold = 0.2,
uni = FALSE,
multi = TRUE,
final = FALSE,
imputed = FALSE,
keepstats = FALSE,
showstats = TRUE,
...
)
Arguments
fit |
An object of class lm or glm |
threshold |
numeric |
uni |
logical whether or not perform univariate regression |
multi |
logical whether or not perform multivariate regression |
final |
logical whether or not perform stepwise backward elimination |
imputed |
logical whether or not include imputed model |
keepstats |
logical whether or not keep statistics |
showstats |
logical whether or not show descriptive statistics |
... |
Further arguments to be passed to imputedReg() |
Value
An object of class "autoReg" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
- attr(*,"model")
name of model. One of "lm","glm" or "coxph"
perform automatic regression for a class of survreg
Description
perform automatic regression for a class of survreg
Usage
autoRegsurvreg(
x,
threshold = 0.2,
uni = FALSE,
multi = TRUE,
final = FALSE,
imputed = FALSE,
keepstats = FALSE,
mode = 1,
...
)
Arguments
x |
An object of class survreg |
threshold |
numeric |
uni |
logical whether or not perform univariable regression |
multi |
logical whether or not perform multivariable regression |
final |
logical whether or not perform stepwise backward elimination |
imputed |
logical whether or not perform multiple imputation |
keepstats |
logical whether or not keep statistic |
mode |
integer |
... |
Further arguments to be passed to gaze() |
Value
autoRegsurvreg returns an object of class "autoReg" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
- attr(*,"model")
name of model. One of "lm","glm","coxph" or "survreg"
Examples
require(survival)
require(dplyr)
data(cancer)
fit=survreg(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
autoReg(fit)
autoReg(fit,uni=TRUE,threshold=1)
autoReg(fit,uni=TRUE,final=TRUE)
autoReg(fit,uni=TRUE,final=TRUE) %>% myft()
## Not run:
autoReg(fit,mode=2)
autoReg(fit,uni=TRUE,threshold=1,,mode=2)
autoReg(fit,uni=TRUE,final=TRUE,mode=2)
autoReg(fit,uni=TRUE,final=TRUE,mode=2) %>% myft()
autoReg(fit,final=TRUE,imputed=TRUE) %>% myft()
autoReg(fit,final=TRUE,imputed=TRUE,mode=2) %>% myft()
## End(Not run)
Whether a string vector can be converted to numeric
Description
Whether a string vector can be converted to numeric
Usage
beNumeric(x)
Arguments
x |
A string vector |
Value
A logical vector
Bootstrap simulation for model prediction
Description
Generate model predictions against a specified set of explanatory levels with bootstrapped confidence intervals.
Usage
bootPredict(fit, newdata, R = 100, type = "response", ...)
Arguments
fit |
An object of class lm or glm |
newdata |
A data.frame |
R |
Number of simulations. Note default R=100 is very low. |
type |
he type of prediction required, see predict.glm. The default for glm models is on the scale of the response variable. Thus for a binomial model the default predictions are predicted probabilities. |
... |
Further arguments to be passed to boot::boot |
Value
An object of class "data.frame"
Examples
data(GBSG2,package="TH.data")
fit=glm(cens~horTh+pnodes,data=GBSG2,family="binomial")
newdata=expand.grid(horTh=factor(c(1,2),labels=c("no","yes")),pnodes=1:51)
bootPredict(fit,newdata)
library(survival)
fit=coxph(Surv(time,cens)~age+horTh+progrec+pnodes,data=GBSG2)
Count groups
Description
Count groups
Usage
countGroups(data, yvars)
Arguments
data |
A data.frame |
yvars |
variable names |
Value
An object of class "tibble"
Examples
library(moonBook)
countGroups(acs,"sex")
countGroups(acs,c("sex","Dx"))
Graphical Test of Proportional Hazards
Description
Tis is a ggplot version of plot.cox.zph. Displays a graph of the scaled Schoenfeld residuals, along with a smooth curve.
Usage
coxzphplot(x, resid = TRUE, se = TRUE, var = NULL, hr = FALSE, add.lm = FALSE)
Arguments
x |
result of the cox.zph function. |
resid |
a logical value, if TRUE the residuals are included on the plot, as well as the smooth fit. |
se |
a logical value, if TRUE, confidence bands at two standard errors will be added. |
var |
The set of variables for which plots are desired. It can be integer or variable names |
hr |
logical If true, plot for hazard ratio, If false, plot for coefficients |
add.lm |
logical If true, add linear regression line |
Value
A facetted ggplot
Examples
library(survival)
vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) + karno + age, data=veteran, x=TRUE)
x <- cox.zph(vfit)
coxzphplot(x)
coxzphplot(x,var="karno",add.lm=TRUE)
Extract statistics from an object of class crr
Description
Extract statistics from an object of class crr
Usage
crr2stats(x, digits = 2)
Arguments
x |
an object of class crr |
digits |
integer indication the position of decimal place |
Value
An object of class "data.frame"
Examples
data(melanoma,package="boot")
melanoma$status_crr=ifelse(melanoma$status==1,1,ifelse(melanoma$status==2,0,2))
x=crrFormula(time+status_crr~age+sex+thickness+ulcer,data=melanoma)
crr2stats(x)
Competing Risk Regression with Formula
Description
Competing Risk Regression with Formula
Usage
crrFormula(x, data, ...)
Arguments
x |
formula time+status~explanatory variables |
data |
data a data.frame |
... |
Further arguments to be passed to |
Value
An object of class "tidycrr" which is described in crr
Examples
data(melanoma,package="boot")
melanoma$status_crr=ifelse(melanoma$status==1,1,ifelse(melanoma$status==2,0,2))
crrFormula(time+status_crr~age+sex+thickness+ulcer,data=melanoma)
Make description for numeric summary
Description
Make description for numeric summary
Usage
descNum(method = 1, p = NULL)
Arguments
method |
numeric |
p |
A numeric or NULL |
Value
A character vector of length 1
Convert data.frame to flextable
Description
Convert data.frame to flextable
Usage
df2flextable(
df,
vanilla = FALSE,
fontname = NULL,
fontsize = 12,
add.rownames = FALSE,
even_header = "transparent",
odd_header = "#5B7778",
even_body = "#EFEFEF",
odd_body = "transparent",
vlines = TRUE,
colorheader = FALSE,
digits = 2,
digitp = 3,
align_header = "center",
align_body = "right",
align_rownames = "left",
NA2space = TRUE,
pcol = NULL,
...
)
Arguments
df |
A data.frame |
vanilla |
A Logical |
fontname |
Font name |
fontsize |
font size |
add.rownames |
logical. Whether or not include rownames |
even_header |
background color of even_header |
odd_header |
background color of even_header |
even_body |
background color of even_body |
odd_body |
background color of even_body |
vlines |
Logical. Whether or not draw vertical lines |
colorheader |
Logical. Whether or not use color in header |
digits |
integer indicating the number of decimal places |
digitp |
integer indicating the number of decimal places of p values |
align_header |
alignment of header. Expected value is one of 'left', 'right', 'center', 'justify'. |
align_body |
alignment of body. Expected value is one of 'left', 'right', 'center', 'justify'. |
align_rownames |
alignment of rownames. Expected value is one of 'left', 'right', 'center', 'justify'. |
NA2space |
A logical. If true, convert NA value to space |
pcol |
An integer indicating p value. If specified, convert value less than 0.01 to "< 0.001" in given column. |
... |
further arguments to be passed to |
Value
An object of class "flextable" which is described in flextable
draw line character
Description
draw line character
Usage
drawline(n)
Arguments
n |
Numeric |
Value
No return value, called for side effects
Examples
drawline(10)
Draw an adjusted Plot for a numeric predictor
Description
Select cutpoint for a numeric predictor with maxstat.test() and draw survival plot with this cutpoint
Usage
expectedPlot(
fit,
xname = NULL,
no = 2,
maxy.lev = 5,
median = TRUE,
mark.time = FALSE,
se = FALSE,
type = "ggplot",
...
)
Arguments
fit |
An object of class "coxph" |
xname |
Character Name of explanatory variable to plot |
no |
integer Number of groups to be made |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
median |
Logical |
mark.time |
logical Whether or not mark time |
se |
logical Whether or not show se |
type |
Character "plot" or "ggplot" |
... |
further arguments to be passed to plot.survfit |
Value
No return value, called for side effects
Examples
library(survival)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~age+sex,data =colon)
expectedPlot(fit,xname="age")
fit=coxph(Surv(time,status)~rx+logWBC,data=anderson)
expectedPlot(fit,xname="logWBC",no=3)
filldown vector with lead value
Description
filldown vector with lead value
Usage
filldown(x, what = c("", NA))
Arguments
x |
a vector |
what |
Values to be filled |
Value
A vector with the same class as x
Examples
x=rep(1:5,each=3)
x=removeDup(x,NA)
filldown(x)
Find first duplicated position
Description
Find first duplicated position
Usage
find1stDup(x)
Arguments
x |
a vector |
Value
A logical vector
Examples
x=rep(1:5,each=3)
which(find1stDup(x))
Find duplicated term
Description
Find duplicated term
Usage
findDup(x)
Arguments
x |
A vector |
Value
A logical vector
Examples
x=rep(1:5,each=3)
findDup(x)
x=c(6,x)
findDup(x)
which(!findDup(x))
Make final model using stepwise backward elimination
Description
Make final model using stepwise backward elimination
Usage
fit2final(fit, threshold = 0.2)
Arguments
fit |
An object of class "coxph" |
threshold |
Numeric |
Value
An object of class "coxph" which is described in coxph
Examples
require(survival)
data(cancer)
fit=coxph(Surv(time,status)~age+sex+obstruct+perfor,data=colon)
final=fit2final(fit)
fit2summary(final)
extract likelihood information with a coxph object
Description
extract likelihood information with a coxph object
Usage
fit2lik(x)
Arguments
x |
An object of class "coxph" or "survreg" |
Value
A string
Examples
library(survival)
fit=coxph(Surv(time,status) ~rx,data=anderson)
fit2lik(fit)
Make a list of univariable model with multivariable regression model
Description
Make a list of univariable model with multivariable regression model
Usage
fit2list(fit)
Arguments
fit |
An object of class "lm" or "glm" |
Value
An object of class "fitlist" which is a list of objects of class "lm" or "glm"
Examples
library(survival)
data(cancer)
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
fit2list(fit)
fit=lm(mpg~wt*hp+am,data=mtcars)
fit2list(fit)
Restore fit model data containing AsIs expressions
Description
Restore fit model data containing AsIs expressions
Usage
fit2model(fit)
Arguments
fit |
An object of class "lm", "glm" or "coxph" |
Value
An object of class "data.frame"
Examples
require(survival)
pbc$status2=ifelse(pbc$status==2,1,0)
fit=coxph(Surv(time,status2)~age+log(bili),data=pbc)
fit2model(fit)
Make multivariable regression model by selecting univariable models with p.value below threshold
Description
Make multivariable regression model by selecting univariable models with p.value below threshold
Usage
fit2multi(fit, threshold = 0.2)
Arguments
fit |
An object of class "coxph" |
threshold |
Numeric |
Value
An object of class "coxph"
Examples
require(survival)
data(cancer)
fit=coxph(Surv(time,status)~age+sex+obstruct+perfor,data=colon)
fit2multi(fit)
Make a new data of mean value or most frequent value
Description
Make a new data of mean value or most frequent value
Usage
fit2newdata(
fit,
xnames = NULL,
pred.values = list(),
maxy.lev = 5,
median = TRUE,
digits = 1
)
Arguments
fit |
An object of class "coxph" |
xnames |
character Names of explanatory variable to plot |
pred.values |
A list A list of predictor values |
maxy.lev |
Integer Maximum unique length of a numeric variable to be treated as categorical variables |
median |
logical If TRUE, select median value for numerical variable. Otherwise select most frequent value |
digits |
integer indicating the number of decimal places |
Value
A data.frame
Examples
require(survival)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~rx+sex+age,data=colon)
fit=coxph(Surv(time,status)~rx+age+strata(sex),data=colon)
fit=survreg(Surv(time, status) ~ ph.ecog + age + sex, data=lung, dist="weibull")
fit2newdata(fit)
fit2newdata(fit,pred.values=list(sex=0,age=58))
fit2newdata(fit,pred.values=list(age=c(20,40,60,80),sex=2,ph.ecog=3))
Summarize statistics with a model
Description
Summarize statistics with a model
Usage
fit2stats(fit, method = "default", digits = 2, mode = 1)
Arguments
fit |
An object of class lm or glm or coxph or survreg |
method |
character choices are one of the c("likelihood","wald") |
digits |
integer indicating the number of decimal places |
mode |
integer |
Value
An object of class "data.frame"
Examples
library(survival)
data(cancer)
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
fit2stats(fit)
fit=lm(mpg~wt*hp+am,data=mtcars)
fit2stats(fit)
fit=survreg(Surv(time,status)~rx+sex+age+obstruct+nodes,data=colon)
fit2stats(fit)
Summarize statistics with a model or model list
Description
Summarize statistics with a model or model list
Usage
fit2summary(fit, mode = 1, ...)
Arguments
fit |
An object of class "lm" or "glm" or "fitlist" which is a result of |
mode |
integer |
... |
Further argument to be passed to fit2stats |
Value
An object of class "data.frame"
Examples
library(survival)
data(cancer)
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
fit2summary(fit)
fitlist=fit2list(fit)
fit2summary(fitlist)
fit=survreg(Surv(time,status)~rx+sex+age+obstruct+nodes,data=colon)
fit2summary(fit)
Produce table for descriptive statistics
Description
Produce table for descriptive statistics by groups for several variables easily. Depending on the nature of these variables, different descriptive statistical methods were used(t-test, ANOVA, Kruskal-Wallis, chi-squared, Fisher's,...)
Usage
gaze(x, ...)
## S3 method for class 'formula'
gaze(x, ...)
## S3 method for class 'data.frame'
gaze(x, ...)
## S3 method for class 'coxph'
gaze(x, ...)
## S3 method for class 'survreg'
gaze(x, ...)
## S3 method for class 'glm'
gaze(x, ...)
## S3 method for class 'lm'
gaze(x, ...)
## S3 method for class 'tidycrr'
gaze(x, ...)
Arguments
x |
An R object, formula or data.frame |
... |
arguments to be passed to gaze.data.frame or gaze.formula |
Value
An object of class "gaze" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
Methods (by class)
-
gaze(formula)
: S3 method for formula -
gaze(data.frame)
: default S3 method -
gaze(coxph)
: default S3 method -
gaze(survreg)
: default S3 method -
gaze(glm)
: default S3 method -
gaze(lm)
: default S3 method -
gaze(tidycrr)
: default S3 method
Examples
library(moonBook)
library(dplyr)
gaze(acs)
gaze(~age+sex,data=acs)
gaze(sex~.,data=acs,digits=1,method=1,show.p=TRUE) %>% myft()
gaze(sex~age+Dx,data=acs)
gaze(EF~.,data=acs) %>% myft()
gaze(sex+Dx~.,data=acs,show.p=TRUE) %>% myft()
gaze(sex+Dx~.,data=acs)
gaze(Dx+sex~cardiogenicShock,data=acs,show.p=TRUE) %>% myft()
gaze(Dx+sex+HBP~cardiogenicShock,data=acs,show.p=TRUE)
gaze(~mpg+cyl,data=mtcars)
gaze(~.,data=mtcars)
gaze(cyl~.,data=mtcars,show.p=TRUE)
gaze(hp~.,data=mtcars)
gaze(cyl+am~.,data=mtcars)
library(survival)
x=coxph(Surv(time,status) ~rx,data=anderson1)
gaze(x)
x=coxph(Surv(time,status) ~rx*logWBC,data=anderson1)
gaze(x)
library(survival)
x=survreg(Surv(time, status) ~ rx, data=anderson,dist="exponential")
gaze(x)
x=survreg(Surv(time, status) ~ ph.ecog + age + sex, lung)
gaze(x)
data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
gaze(fit)
fit=lm(mpg~wt*hp+am+I(wt^2),data=mtcars)
gaze(fit)
data(melanoma,package="boot")
melanoma$status_crr=ifelse(melanoma$status==1,1,ifelse(melanoma$status==2,0,2))
fit=crrFormula(time+status_crr~age+sex+thickness+ulcer,data=melanoma)
gaze(fit)
Produce table for descriptive statistics
Description
Produce table for descriptive statistics by groups for several variables easily. Depending on the nature of these variables, different descriptive statistical methods were used(t-test, ANOVA, Kruskal-Wallis, chi-squared, Fisher's,...)
Usage
## S3 method for class 'formula_sub'
gaze(x, data, missing = FALSE, ...)
Arguments
x |
An object of class "formula". Left side of ~ must contain the name of one grouping variable or two grouping variables in an additive way(e.g. sex+group~), and the right side of ~ must have variables in an additive way. |
data |
A data.frame |
missing |
logical If true, missing value analysis performed |
... |
Further arguments to be passed to gaze() |
Value
An object of class "gaze" which inherits from the class "data.frame" with at least the following attributes:
- attr(*,"yvars)
character. name of dependent variable
Summary function for categorical variable
Description
Summary function for categorical variable
Usage
gazeCat(
data,
x,
y = NULL,
max.ylev = 5,
digits = 1,
show.total = FALSE,
show.n = FALSE,
show.missing = FALSE,
show.stats = TRUE,
origData = NULL,
show.p = TRUE,
method = 1,
catMethod = 2,
maxCatLevel = 20,
...
)
Arguments
data |
A data frame |
x |
Name of a categorical variable |
y |
Name of a variable, either continuous or categorical |
max.ylev |
max.ylev An integer indicating the maximum number of levels of grouping variable ('y'). If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5. |
digits |
Numeric |
show.total |
logical. Whether or not show total column |
show.n |
logical. Whether or not show N column |
show.missing |
logical. Whether or not show missing column |
show.stats |
logical. Whether or not show stats column |
origData |
A data.frame containing original data |
show.p |
logical. Whether or not show p column |
method |
method An integer indicating methods for continuous variables. Possible values in methods are 1 forces analysis as normal-distributed 2 forces analysis as continuous non-normal 3 performs a Shapiro-Wilk test or nortest::ad.test to decide between normal or non-normal Default value is 1. |
catMethod |
An integer indicating methods for categorical variables. Possible values in methods are
Default value is 2. |
maxCatLevel |
An integer indicating the maximum number of unique levels of categorical variable. If a column have unique values more than maxCatLevel, categorical summarization will not be performed. |
... |
Further arguments |
Value
An object of class "data.frame" or "tibble"
Examples
require(moonBook)
gazeCat(acs,"Dx")
gazeCat(acs,"Dx","smoking")
gazeCat(acs,"sex","Dx",show.p=TRUE)
gazeCat(acs,"Dx","sex",show.p=TRUE)
gazeCat(acs,"Dx","EF")
gazeCat(acs,"sex","EF",method=2)
gazeCat(mtcars,"cyl","hp")
Summary function for continuous variable
Description
Summary function for continuous variable
Usage
gazeCont(
data,
x,
y = NULL,
max.ylev = 5,
digits = 1,
show.total = FALSE,
show.n = FALSE,
show.missing = FALSE,
show.stats = TRUE,
show.p = TRUE,
method = 1,
origData,
...
)
Arguments
data |
A data.frame |
x |
A name of variable |
y |
A name of variable, either continuous or categorical |
max.ylev |
max.ylev An integer indicating the maximum number of levels of grouping variable ('y'). If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5. |
digits |
integer indicating the number of decimal places |
show.total |
logical. Whether or not show total column |
show.n |
logical. Whether or not show N column |
show.missing |
logical. Whether or not show missing column |
show.stats |
logical. Whether or not show stats column |
show.p |
logical. Whether or not show p column |
method |
method An integer indicating methods for continuous variables. Possible values in methods are 1 forces analysis as normal-distributed 2 forces analysis as continuous non-normal 3 performs a Shapiro-Wilk test or nortest::ad.test to decide between normal or non-normal Default value is 1. |
origData |
A data.frame containing original data |
... |
Further arguments |
Value
An object of class "data.frame" or "tibble"
Examples
gazeCont(mtcars,"hp")
gazeCont(mtcars,"hp","mpg")
require(moonBook)
gazeCont(acs,"log(age)")
gazeCont(acs,"age",method=2)
gazeCont(acs,"age","EF",method=2)
gazeCont(acs,"age","Dx",method=1)
gazeCont(acs,"age","Dx",show.p=TRUE,method=3)
Summary function for categorical/continuous variable
Description
Summary function for categorical/continuous variable
Usage
gaze_sub(data, xname, y = NULL, max.ylev = 5, autoCat = FALSE, ...)
Arguments
data |
A data.frame |
xname |
A name of categorical/continuous vector |
y |
A name of vector, either continuous or categorical |
max.ylev |
max.ylev An integer indicating the maximum number of levels of grouping variable ('y'). If a column have unique values less than max.ylev it is treated as a categorical variable. Default value is 5. |
autoCat |
logical Whether or not use is.mynumeric() to determine whether a variable is numeric or not |
... |
Further arguments to be passed to gazeCont() or gazeCat() |
Value
An object of class "data.frame" or "tibble"
Examples
require(moonBook)
gaze_sub(acs,"age")
gaze_sub(acs,"log(age)")
gaze_sub(acs,"I(age^2)")
gaze_sub(acs,"sex")
gaze_sub(acs,"age","EF")
gaze_sub(acs,"sex","EF")
gaze_sub(acs,"age","Dx")
gaze_sub(acs,"sex","Dx")
gaze_sub(iris,"Species","Sepal.Length")
gaze_sub(mtcars,"am")
gaze_sub(mtcars,"am",autoCat=TRUE)
Get interaction data from data
Description
Get interaction data from data
Usage
getInteraction(name, data)
Arguments
name |
a string with interaction term |
data |
a data.frame |
Value
An object of class "data.frame"
Examples
data(acs,package="moonBook")
getInteraction("TC:Dx:sex",data=acs)
Get number of data specified by 'name' and 'desc'
Description
Get number of data specified by 'name' and 'desc'
Usage
getN(name, desc, data)
Arguments
name |
a string with interaction term |
desc |
character |
data |
a data.frame |
Value
A numeric vector
Examples
data(acs,package="moonBook")
df=getInteraction("TC:Dx:sex",data=acs)
getN(name=df$name,desc=df$desc,data=acs)
Get explanatory variables of a model with significance level below the threshold
Description
Get explanatory variables of a model with significance level below the threshold
Usage
getSigVars(fit, threshold = 0.2, final = TRUE)
Arguments
fit |
An object of class lm or glm |
threshold |
Numeric |
final |
logical if true, perform stepwise regression using step() |
Value
A list containing the following components:
- sigVars
names of explanatory variables which have significant levels below the threshold in univariable model
- finalVars
names of explanatory variables included in final model as a result of
step
Examples
library(survival)
data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
getSigVars(fit)
fit=lm(mpg~hp*wt+am,data=mtcars)
getSigVars(fit)
Draw Cumulative Incidence Curves for Competing Risks
Description
Draw Cumulative Incidence Curves for Competing Risks
Usage
ggcmprsk(x, data, id = NULL, se = FALSE, strata = NULL, facet = NULL, ...)
Arguments
x |
A formula as time+status~1 |
data |
A data.frame |
id |
character vector label for status |
se |
logical whether or not show confidence interval |
strata |
character vector label for strata |
facet |
numeric if facet is not NULL, draw plot with selected facets |
... |
Further arguments to be passed to tidycmprsk::cuminc |
Value
An object of class "ggplot"
Examples
data(melanoma,package="boot")
melanoma$status1 = ifelse(melanoma$status==1,1,ifelse(melanoma$status==2,0,2))
melanoma$years=melanoma$time/365
ggcmprsk(years+status1~1,data=melanoma)
ggcmprsk(years+status1~1,data=melanoma,id=c("alive","melanoma","other"),se=TRUE)
ggcmprsk(years+status1~sex,data=melanoma)
ggcmprsk(years+status1~sex,data=melanoma,facet=1)
ggcmprsk(years+status1~sex,data=melanoma,
id=c("alive","melanoma","other"),strata=c("female","male"))
ggcmprsk(years+status1~sex,data=melanoma,
id=c("alive","melanoma","other"),strata=c("female","male"),facet=1)
Compare cumulative incidence to th Kaplan-Meier estimate
Description
Compare cumulative incidence to th Kaplan-Meier estimate
Usage
ggcmprsk2(
x,
data,
id = c("disease", "other"),
se = FALSE,
xpos = c(2, 2),
ypos = c(0.25, 0.7),
ylabs = NULL,
xlab = NULL,
label = NULL,
plot = TRUE
)
Arguments
x |
A formula as time+status~1 |
data |
A data.frame |
id |
Character vector of length2 |
se |
logical whether or not show confidence interval |
xpos |
numeric x-axis position of label |
ypos |
numeric y-axis position of label |
ylabs |
string vector of length 2. y axis labels |
xlab |
A character. The x-axis label |
label |
string vector of length 2. Label names |
plot |
logical Whether or not print plot |
Value
A list containing the following components:
- df
A long-form data.frame consist of time, est, upper,lower, id, method
- df3
A data.frame for label consist of x, y, label, id
- p
A ggplot object
Examples
require(dplyr)
data(prostateSurvival,package="asaur")
prostateHighRisk <- prostateSurvival %>%
filter(grade=="poor" & stage=="T2",ageGroup=="80+")
prostateHighRisk$years=prostateHighRisk$survTime/12
ggcmprsk2(years+status~1,data=prostateHighRisk,
id=c("prostate cancer","other causes"))
Highlight a data.frame
Description
Highlight a data.frame
Usage
highlight2(x, i = NULL, j = NULL, style = NULL, include.colname = FALSE)
Arguments
x |
A data.frame |
i |
numeric rows to highlight |
j |
numeric columns to hightlight |
style |
A style function or NULL |
include.colname |
logical Whether or not include colname |
Value
a data.frame
Examples
head(mtcars) %>% highlight2(i=3) %>% printdf()
library(crayon)
head(mtcars) %>% highlight2(i=2) %>% highlight2(j=3,style=blue$bold) %>% printdf()
fit=lm(mpg~wt*hp,data=mtcars)
gaze(fit)
gaze(fit) %>% highlight2(j=4,include.colname=TRUE)
gaze(fit) %>% highlight2(i=2,j=4) %>% highlight2(i=2,j=2:3,style=blue$bold)
gaze(fit) %>% highlight2(i=2) %>% highlight2(j=3,style=blue$bold)
Make a multiple imputed model
Description
Make a multiple imputed model
Usage
imputedReg(fit, data = NULL, m = 20, seed = 1234, digits = 2, mode = 1, ...)
Arguments
fit |
An object of class lm, glm, coxph or survreg |
data |
a data.frame |
m |
Number of multiple imputations. The default is m=20. |
seed |
An integer that is used as argument by the set.seed() for offsetting the random number generator. |
digits |
Integer indicating the number of decimal place |
mode |
integer indicating summary mode of class survreg |
... |
Further argument to be passed to mice |
Value
An object of class "imputedReg" which inherits from the class "data.frame"
Examples
data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
imputedReg(fit)
library(survival)
fit=coxph(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
imputedReg(fit)
fit=survreg(Surv(time,status)~rx+age+sex+nodes+obstruct+perfor,data=colon)
imputedReg(fit)
imputedReg(fit,mode=2)
Decide whether a vector can be treated as a numeric variable
Description
Decide whether a vector can be treated as a numeric variable
Usage
is.mynumeric(x, maxy.lev = 5)
Arguments
x |
A vector |
maxy.lev |
An integer indicating the maximum number of unique values of a numeric variable be treated as a categorical variable |
Value
A logical value
Examples
x=1:5
is.mynumeric(x)
x=1:13
is.mynumeric(x)
takes the breaks as input and returns labels as output
Description
takes the breaks as input and returns labels as output
Usage
label_parse(breaks)
Arguments
breaks |
character |
Value
a character vector
Draw log-log plot
Description
Draw log-log plot
Usage
loglogplot(
fit,
xnames = NULL,
main = NULL,
labels = NULL,
no = 3,
add.loess = FALSE,
add.lm = TRUE,
type = "l",
se = TRUE,
what = "surv",
legend.position = NULL,
...
)
Arguments
fit |
An object of class "coxph" or "survfit" |
xnames |
character Names of explanatory variable to plot |
main |
String Title of plot |
labels |
String vector Used as legend in legend |
no |
Numeric The number of groups to be converted |
add.loess |
logical If true, add loess regression line |
add.lm |
logical If true, add linear regression line |
type |
character "l" or "p" |
se |
logical If true, add se |
what |
character One of c("surv","survOdds","failureOdds") |
legend.position |
legend position. One of c("left","top","bottom","right") or numeric vector of length 2. |
... |
Furhter arguments to be passed to plot() |
Value
A ggplot or no return value, called for side effects
Examples
require(survival)
data(cancer,package="survival")
fit=coxph(Surv(time,status)~x,data=leukemia)
loglogplot(fit)
fit=survfit(Surv(time,status)~1,data=anderson)
loglogplot(fit)
fit=survfit(Surv(time,status)~sex,data=anderson)
loglogplot(fit)
fit=survfit(Surv(time,status)~logWBC,data=anderson)
loglogplot(fit)
loglogplot(fit,no=2)
fit=survfit(Surv(time,status)~logWBC+rx,data=anderson)
loglogplot(fit,no=2)
fit=survfit(Surv(time,status)~rx,data=anderson)
loglogplot(fit,type="p")
fit=survfit(Surv(time,status)~WBCCAT,data=anderson2)
loglogplot(fit,type="p",what="survOdds")
loglogplot(fit,type="p",what="failureOdds")
Return maximum character number except NA
Description
Return maximum character number except NA
Usage
maxnchar(x)
Arguments
x |
a vector |
Value
A numeric vector of length 1
Examples
x=c(1,2,"sadf",NA)
maxnchar(x)
data(acs,package="moonBook")
lapply(acs,maxnchar)
Draw coefficients/odds ratio/hazard ratio plot
Description
Draw coefficients/odds ratio/hazard ratio plot
Usage
modelPlot(
fit,
widths = NULL,
change.pointsize = TRUE,
show.OR = TRUE,
show.ref = TRUE,
bw = TRUE,
legend.position = "top",
...
)
Arguments
fit |
An object of class glm |
widths |
Numeric vector |
change.pointsize |
logical Whether or not change point size |
show.OR |
logical Whether or not show odds ratio |
show.ref |
logical Whether or not show reference |
bw |
logical If true, use grey scale |
legend.position |
legend position default value is 'top' |
... |
Further arguments to be passed to autoReg() |
Value
modelPlot returns an object of class "modelPlot" An object of class modelPlot is a list containing at least of the following components:
- tab1
The first table containing names
- tab2
The 2nd table containing levels
- tab3
The 3rd table containing coefficients or odds ratio or hazards ratio
- p
A ggplot
- widths
the widths of the tables and the ggplot
Examples
fit=lm(mpg~wt*hp+am,data=mtcars)
modelPlot(fit,widths=c(1,0,2,3))
modelPlot(fit,uni=TRUE,threshold=1,widths=c(1,0,2,3))
fit=lm(Sepal.Width~Sepal.Length*Species,data=iris)
modelPlot(fit)
modelPlot(fit,uni=TRUE,change.pointsize=FALSE)
data(cancer,package="survival")
fit=glm(status~rx+age+sex+nodes+obstruct+perfor,data=colon,family="binomial")
modelPlot(fit)
modelPlot(fit,uni=TRUE,multi=TRUE,threshold=1)
modelPlot(fit,multi=TRUE,imputed=TRUE,change.pointsize=FALSE)
data(colon_s,package="finalfit")
fit=glm(mort_5yr~age.factor+sex.factor+obstruct.factor+perfor.factor,data=colon_s,family="binomial")
modelPlot(fit)
modelPlot(fit,uni=TRUE,multi=TRUE,threshold=1)
modelPlot(fit,uni=TRUE,multi=TRUE)
modelPlot(fit,uni=TRUE,multi=TRUE,threshold=1,show.ref=FALSE)
library(survival)
fit=coxph(Surv(time,status)~rx+age+sex+obstruct+perfor,data=colon)
modelPlot(fit)
modelPlot(fit,uni=TRUE,threshold=1)
modelPlot(fit,multi=FALSE,final=TRUE,threshold=1)
fit=coxph(Surv(time,status)~age.factor+sex.factor+obstruct.factor+perfor.factor,data=colon_s)
modelPlot(fit)
modelPlot(fit,uni=TRUE,threshold=1)
modelPlot(fit,uni=TRUE,threshold=1,show.ref=FALSE)
modelPlot(fit,imputed=TRUE)
Makes table summarizing list of models
Description
Makes table summarizing list of models
Usage
modelsSummary(fitlist, show.lik = FALSE)
Arguments
fitlist |
A list of objects of class "coxph" |
show.lik |
logical Whether or not show likelihood test results |
Value
No return value, called for side effects
Examples
library(survival)
fit1=coxph(Surv(time,status) ~rx,data=anderson)
fit2=coxph(Surv(time,status) ~rx+logWBC,data=anderson)
fit3=coxph(Surv(time,status) ~rx*logWBC,data=anderson)
fitlist=list(fit1,fit2,fit3)
modelsSummary(fitlist)
Makes flextable summarizing list of models
Description
Makes flextable summarizing list of models
Usage
modelsSummaryTable(fitlist, labels = NULL, show.lik = FALSE)
Arguments
fitlist |
A list of objects of class "coxph" |
labels |
character labels of models |
show.lik |
logical Whether or not show likelihood test results |
Value
A flextable
Examples
library(survival)
fit1=coxph(Surv(time,status) ~rx,data=anderson)
fit2=coxph(Surv(time,status) ~rx+logWBC,data=anderson)
fit3=coxph(Surv(time,status) ~rx*logWBC,data=anderson)
fitlist=list(fit1,fit2,fit3)
modelsSummaryTable(fitlist)
Statistical test for categorical variables Statistical test for categorical variables
Description
Statistical test for categorical variables Statistical test for categorical variables
Usage
my.chisq.test2(x, y, catMethod = 2, all = FALSE)
Arguments
x |
a vector |
y |
a vector |
catMethod |
An integer indicating methods for categorical variables. Possible values in methods are
Default value is 2. |
all |
A logical |
Value
A numeric vector of length 1
Examples
library(moonBook)
x=acs$sex
y=acs$Dx
my.chisq.test2(x,y)
Statistical test for continuous variables
Description
Statistical test for continuous variables
Usage
my.t.test2(y, x, method = 1, all = FALSE)
Arguments
y |
a categorical vector |
x |
a numeric vector |
method |
method An integer indicating methods for continuous variables. Possible values in methods are 1 forces analysis as normal-distributed 2 forces analysis as continuous non-normal 3 performs a Shapiro-Wilk test or nortest::ad.test to decide between normal or non-normal Default value is 1. |
all |
A logical |
Value
A numeric vector of length 1
Examples
library(moonBook)
y=acs$sex
x=acs$height
my.t.test2(y,x)
Fit Simple Proportional Hazards Regression Model
Description
Fit Simple Proportional Hazards Regression Model
Usage
mycphSimple(fit, threshold = 0.2, digits = 2)
Arguments
fit |
An object of class coxph |
threshold |
numeric p-value threshold to enter multiple model |
digits |
integer indicating the position decimal place |
Value
An object of class "data.frame"
Examples
require(survival)
data(cancer)
fit=coxph(Surv(time,status)~age+sex+obstruct+perfor,data=colon)
mycphSimple(fit)
Convert data.frame to printable format
Description
Convert data.frame to printable format
Usage
myformat(x, showid = FALSE, digits = 3)
Arguments
x |
A data.frame |
showid |
logical if TRUE, show id |
digits |
Integer indicating the number of decimal places |
Value
A data.frame
Examples
fit=lm(mpg~wt*hp,data=mtcars)
gaze(fit) %>% myformat()
Convert data.frame into flextable
Description
Convert data.frame into flextable
Usage
myft(x, vanilla = TRUE, fontsize = 10, digits, showid = FALSE, ...)
Arguments
x |
A data.frame |
vanilla |
logical |
fontsize |
Numeric |
digits |
integer indicating the position of decimal place |
showid |
logical if TRUE, show id |
... |
Further arguments to be passed to df2flextable() |
Value
An object of class flextable
Examples
data(acs,package="moonBook")
library(dplyr)
gaze(acs) %>% myft()
gaze(sex~.,acs) %>% myft()
fit=lm(mpg~hp*wt,data=mtcars)
gaze(fit) %>% myft()
library(survival)
fit=coxph(Surv(time,status) ~rx,data=anderson1)
gaze(fit) %>% myft()
gaze(sex+Dx~.,data=acs,show.p=TRUE,show.total=TRUE,show.n=TRUE,shiw.missing=TRUE) %>% myft()
gaze(Dx+sex~cardiogenicShock,data=acs,show.p=TRUE) %>% myft()
gaze(Dx+sex+HBP~cardiogenicShock,data=acs,show.p=TRUE) %>% myft()
Fit Simple AFT Model
Description
Fit Simple AFT Model
Usage
mysurvregSimple(fit, threshold = 0.2, digits = 2, mode = 1)
Arguments
fit |
An object of class survreg |
threshold |
numeric p-value threshold to enter multiple model |
digits |
integer indicating the position decimal place |
mode |
integer |
Value
An object of class "data.frame"
Examples
require(survival)
data(cancer)
fit=survreg(Surv(time,status)~rx+age+strata(sex)+obstruct+perfor,data=colon)
mysurvregSimple(fit)
Convert a numeric column in a data.frame to a factor
Description
Convert a numeric column in a data.frame to a factor
Usage
num2factor(data, call, name, no = 3)
Arguments
data |
A data.frame |
call |
a function call |
name |
character Name of numeric column |
no |
numeric |
Value
A data.frame
Examples
num2factor(anderson,name="logWBC")
library(survival)
fit=coxph(Surv(time,status)~logWBC+rx,data=anderson)
num2factor(anderson,call=fit$call,name="logWBC",no=2)
Summarize numeric vector to statistical summary
Description
Summarize numeric vector to statistical summary
Usage
num2stat(x, digits = 1, method = 1, p = NULL)
Arguments
x |
A numeric vector |
digits |
integer indicating the number of decimal places |
method |
An integer indicating methods for continuous variables. Possible values in methods are 1 forces analysis as normal-distributed 2 forces analysis as continuous non-normal 3 performs a Shapiro-Wilk test or nortest::ad.test to decide between normal or non-normal Default value is 1. |
p |
A numeric |
Value
A character vector of length 1
Examples
library(moonBook)
num2stat(acs$age)
num2stat(acs$age,method=2)
Change p value to string
Description
Change p value to string
Usage
p2character2(x, digits = 3, add.p = TRUE)
Arguments
x |
a numeric |
digits |
integer indicating decimal place |
add.p |
logical |
Value
A character vector
S3 method print for an object of class autoReg
Description
S3 method print for an object of class autoReg
Usage
## S3 method for class 'autoReg'
print(x, ...)
Arguments
x |
An object of class autoReg |
... |
Further arguments |
Value
No return value, called for side effects
Examples
data(cancer,package="survival")
fit=glm(status~rx+sex+age+obstruct+nodes,data=colon,family="binomial")
autoReg(fit)
S3 method print for an object of class gaze
Description
S3 method print for an object of class gaze
Usage
## S3 method for class 'gaze'
print(x, ...)
Arguments
x |
An object of class gaze |
... |
Further arguments |
Value
No return value, called for side effects
Examples
data(acs,package="moonBook")
x=gaze(acs,show.n=TRUE,show.missing=TRUE)
gaze(sex~.,acs,show.p=TRUE,show.n=TRUE,show.missing=TRUE,show.total=TRUE)
gaze(Dx+sex~.,acs,show.p=TRUE)
gaze(sex+Dx+HBP~.,acs,show.p=TRUE)
S3 method for an class modelPlot
Description
S3 method for an class modelPlot
Usage
## S3 method for class 'modelPlot'
print(x, ...)
Arguments
x |
An object of class modelPlot |
... |
Further arguments to be passed to plot() |
Print function for data.frame
Description
Print function for data.frame
Usage
printdf(x)
Arguments
x |
A data.frame |
Value
No return value, called for side effects
Examples
x=mtcars[1:5,1:5]
printdf(x)
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
Remove duplicated term
Description
Remove duplicated term
Usage
removeDup(x, replacement = "")
Arguments
x |
A vector |
replacement |
A character to be replaced or NA |
Value
A vector with the same class as x
Examples
x=rep(1:5,each=3)
removeDup(x)
Make a residual plot of NULL model
Description
Make a residual plot of NULL model
Usage
residualNull(x, add.log = TRUE, type = "martingale")
Arguments
x |
An object of calss coxph |
add.log |
logical If true, log of predictor varaibles are added |
type |
character type of residuals |
Examples
library(survival)
data(pharmacoSmoking,package="asaur")
pharmacoSmoking$priorAttemptsT=pharmacoSmoking$priorAttempts
pharmacoSmoking$priorAttemptsT[pharmacoSmoking$priorAttemptsT>20]=20
x=coxph(Surv(ttr,relapse)~age+priorAttemptsT+longestNoSmoke,data=pharmacoSmoking)
residualNull(x)
Draw a residual plot with an object of class coxph
Description
Draw a residual plot with an object of class coxph
Usage
residualPlot(
fit,
type = "martingale",
vars = NULL,
ncol = 2,
show.point = TRUE,
se = TRUE,
topn = 5,
labelsize = 4
)
Arguments
fit |
An object of class coxph or survreg |
type |
character One of the c("martingale","deviance","score","schoenfeld", "dfbeta","dfbetas","scaledsch","partial"). Default value is "martingale". |
vars |
character Names of variables to plot. default value is NULL |
ncol |
numeric number of columns |
show.point |
logical Whether or not show point |
se |
logical Whether or not show se |
topn |
numeric number of data to be labelled |
labelsize |
numeric size of label |
Value
A patchwork object
Examples
require(survival)
data(cancer)
fit=coxph(Surv(time,status==2)~log(bili)+age+cluster(edema),data=pbc)
residualPlot(fit)
residualPlot(fit,vars="age")
fit=coxph(Surv(time,status==2)~age,data=pbc)
residualPlot(fit)
residualPlot(fit,"partial")
fit=coxph(Surv(time,status)~rx+sex+logWBC,data=anderson)
residualPlot(fit,ncol=3)
## Not run:
data(pharmacoSmoking,package="asaur")
fit=coxph(Surv(ttr,relapse)~grp+employment+age,data=pharmacoSmoking)
residualPlot(fit)
residualPlot(fit,var="age")
residualPlot(fit,type="dfbeta")
residualPlot(fit,type="dfbeta",var="age")
residualPlot(fit,type="dfbeta",var="employment")
residualPlot(fit,type="dfbeta",var="employmentother")
pharmacoSmoking$ttr[pharmacoSmoking$ttr==0]=0.5
fit=survreg(Surv(ttr,relapse)~grp+age+employment,data=pharmacoSmoking,dist="weibull")
residualPlot(fit,type="response")
residualPlot(fit,type="deviance")
residualPlot(fit,type="dfbeta",vars="age")
fit=survreg(Surv(time,status)~ph.ecog+sex*age,data=lung,dist="weibull")
residualPlot(fit,"dfbeta")
residualPlot(fit,"deviance")
## End(Not run)
restore data with factor in column name
Description
restore data with factor in column name
Usage
restoreData(data)
Arguments
data |
An object of class "data.frame" |
Value
An object of class "data.frame"
restore data with I() in column name
Description
restore data with I() in column name
Usage
restoreData2(df)
Arguments
df |
An object of class "data.frame" |
Value
An object of class "data.frame"
restore data with operator in column name
Description
restore data with operator in column name
Usage
restoreData3(df, changeLabel = FALSE)
Arguments
df |
An object of class "data.frame" |
changeLabel |
logical |
Value
An object of class "data.frame"
get opposite arithmetic operator
Description
get opposite arithmetic operator
Usage
revOperator(operator)
Arguments
operator |
A character |
Value
A character
Convert numeric columns of data.frame to character
Description
Convert numeric columns of data.frame to character
Usage
roundDf(df, digits = 2)
Arguments
df |
a data.frame |
digits |
integer indicating the number of decimal places |
Value
An object of class "data.frame"
Add label to a vector
Description
Add label to a vector
Usage
setLabel(x, label = "")
Arguments
x |
a vector |
label |
string |
Value
a labelled vector
Shorten an object of class gaze
Description
Shorten an object of class gaze
Usage
shorten(x, xname = NULL, ref = 1)
Arguments
x |
an object of class gaze |
xname |
A variable name |
ref |
Numeric Th number to be used as reference |
Value
An object of class "gaze" which is described in gaze
Examples
data(acs,package="moonBook")
x=gaze(sex~.,data=acs)
shorten(x)
Show effects of covariates
Description
Show effects of covariates
Usage
showEffect(
fit,
x = NULL,
color = NULL,
facet = NULL,
autovar = TRUE,
pred.values = list(),
se = TRUE,
logy = TRUE,
collabel = label_both,
rowlabel = label_both
)
Arguments
fit |
An object of class survreg |
x |
character name of x-axis variable |
color |
character name of color variable |
facet |
character name of facet variable |
autovar |
logical Whether or not select color and facet variable automatically |
pred.values |
list list of values of predictor variables |
se |
logical whether or not show se |
logy |
logical WHether or not draw y-axis on log scale |
collabel |
labeller for column |
rowlabel |
labeller for row |
Value
A ggplot
Examples
library(survival)
library(ggplot2)
fit=survreg(Surv(time,status)~ph.ecog+sex*age,data=lung,dist="weibull")
showEffect(fit)
fit=survreg(Surv(time,status)~rx+sex+age+obstruct+adhere,data=colon,dist="weibull")
showEffect(fit)
showEffect(fit,rowlabel=label_value)
fit=survreg(Surv(time,status)~ph.ecog+sex,data=lung,dist="weibull")
showEffect(fit)
fit=survreg(Surv(time,status)~ph.ecog+age,data=lung,dist="weibull")
showEffect(fit)
fit=survreg(Surv(time,status)~ph.ecog+sex*age,data=lung,dist="weibull")
showEffect(fit,x="age",color="sex",facet="ph.ecog")
showEffect(fit,pred.values=list(age=c(50,60,70),ph.ecog=c(0,3),sex=c(1,2)),
x="ph.ecog",color="sex",facet="age",autovar=FALSE)
fit=survreg(Surv(time,status)~age,data=lung,dist="weibull")
showEffect(fit)
Convert a character vector to a data.frame
Description
Convert a character vector to a data.frame
Usage
strata2df(strata)
Arguments
strata |
A character vector |
Value
A data.frame
Extract survival data from an object of class "survfit"
Description
Extract survival data from an object of class "survfit"
Usage
survfit2df(fit, labels = NULL)
Arguments
fit |
An object of class "survfit" |
labels |
Character |
Value
A data.frame
Examples
library(survival)
data(cancer,package="survival")
fit=survfit(coxph(Surv(time,status)~sex+age+strata(rx),data=colon))
survfit2df(fit)
## Not run:
fit=coxph(Surv(time,status)~sex+age+strata(rx),data=colon)
fit=survfit(as.formula(deparse(fit$terms)),data=fit2model(fit))
survfit2df(fit)
fit=survfit(Surv(time,status)~rx+sex+age,data=colon)
survfit2df(fit)
fit=survfit(Surv(time,status)~1,data=colon)
survfit2df(fit)
## End(Not run)
Make final model using stepwise backward elimination
Description
Make final model using stepwise backward elimination
Usage
survreg2final(fit, threshold = 0.2)
Arguments
fit |
An object of class "survreg" |
threshold |
Numeric |
Value
An object of class "survreg" which is described in survreg
Examples
require(survival)
data(cancer)
fit=survreg(Surv(time,status)~rx+age+sex+obstruct+perfor,data=colon)
survreg2final(fit)
Make multivariable regression model by selecting univariable models with p.value below threshold
Description
Make multivariable regression model by selecting univariable models with p.value below threshold
Usage
survreg2multi(fit, threshold = 0.2)
Arguments
fit |
An object of class "survreg" |
threshold |
Numeric |
Value
An object of class "survreg"
Examples
require(survival)
data(cancer)
fit=survreg(Surv(time,status)~rx+age+sex+obstruct+perfor,data=colon)
survreg2multi(fit)