Version: | 0.6 |
Date: | 2025-06-04 |
Author: | Samuel Pawel |
Maintainer: | Samuel Pawel <samuel.pawel@uzh.ch> |
Title: | Compatible Point Estimates, Confidence Intervals, and P-Values for Two Trials |
Description: | Implements combined p-value functions for two trials along with compatible combined point and interval estimates as described in Pawel, Roos, and Held (2025) <doi:10.48550/arXiv.2503.10246>. |
License: | GPL-3 |
Encoding: | UTF-8 |
Suggests: | roxygen2, tinytest |
NeedsCompilation: | no |
RoxygenNote: | 7.3.1 |
URL: | https://github.com/SamCH93/twotrials |
BugReports: | https://github.com/SamCH93/twotrials/issues |
Packaged: | 2025-06-04 08:10:38 UTC; sam |
Repository: | CRAN |
Date/Publication: | 2025-06-06 12:40:02 UTC |
Combined estimation function from the two-trials rule
Description
This function computes parameter estimates from the combined estimation function based on the two-trials rule
Usage
mu2TR(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments (for consistency with other estimation functions) |
Value
The parameter estimate based on the two-trials rule
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
mu2TR(a = c(0.975, 0.5, 0.025), t1 = -0.4942, t2 = -0.1847, se1 = 0.1833,
se2 = 0.1738, alternative = "less")
Combined estimation function from Edgington's method
Description
This function computes parameter estimates from the combined estimation function based on Edgington's method
Usage
muEdgington(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments for |
Value
The parameter estimate based on Edgington's method
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
muEdgington(a = c(0.975, 0.5, 0.025), t1 = -0.4942, t2 = -0.1847, se1 = 0.1833,
se2 = 0.1738, alternative = "less")
Combined estimation function from Fisher's method
Description
This function computes parameter estimates from the combined estimation function based on Fisher's method
Usage
muFisher(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments for |
Value
The parameter estimate based on Fisher's method
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
muFisher(a = c(0.975, 0.5, 0.025), t1 = -0.4942, t2 = -0.1847, se1 = 0.1833,
se2 = 0.1738, alternative = "less")
Combined estimation function from fixed-effect meta-analysis
Description
This function computes parameter estimates from the combined estimation function based on fixed-effect meta-analysis
Usage
muMA(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments (for consistency with other estimation functions) |
Value
The parameter estimate based on fixed-effect meta-analysis
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
muMA(a = c(0.975, 0.5, 0.025), t1 = -0.4942, t2 = -0.1847, se1 = 0.1833,
se2 = 0.1738, alternative = "less")
Combined estimation function from Pearson's method
Description
This function computes parameter estimates from the combined estimation function based on Pearson's method
Usage
muPearson(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments for |
Value
The parameter estimate based on Pearson's method
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
muPearson(a = c(0.975, 0.5, 0.025), t1 = -0.4942, t2 = -0.1847, se1 = 0.1833,
se2 = 0.1738, alternative = "less")
Combined estimation function from Tippett's method
Description
This function computes parameter estimates from the combined estimation function based on Tippett's method
Usage
muTippett(a = 0.5, t1, t2, se1, se2, alternative = "greater", ...)
Arguments
a |
P-value function quantile corresponding to the parameter estimate.
Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
... |
Additional arguments (for consistency with other estimation functions) |
Value
The parameter estimate based on Tippett's method
Author(s)
Samuel Pawel
See Also
Examples
## 95% CI and median estimate for logRR in RESPIRE trials
muTippett(a = c(0.975, 0.5, 0.025), t1 = -0.491, t2 = -0.185, se1 = 0.179,
se2 = 0.174, alternative = "less")
Combined p-value from the two-trials rule
Description
This function computes the combined p-value based on two parameter estimates using the two-trials rule (also known as the maximum method)
Usage
p2TR(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on the two-trials rule
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
p2TR(mu = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less")
Combined p-value from Edgington's method
Description
This function computes the combined p-value based on two parameter estimates using Edgington's method (also known as the sum method)
Usage
pEdgington(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on Edgington's method
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
pEdgington(mu = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less")
Combined p-value from Fisher's method
Description
This function computes the combined p-value based on two parameter estimates using the Fisher's method (also known as the product method)
Usage
pFisher(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on Fisher's method
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
pFisher(mu = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less")
Combined p-value from fixed-effect meta-analysis
Description
This function computes the combined p-value based on two parameter estimates using fixed-effect meta-analysis (equivalent to Stouffer's p-value combination method with suitable weights)
Usage
pMA(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on fixed-effect meta-analysis
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
pMA(mu = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less")
Combined p-value from Pearson's method
Description
This function computes the combined p-value based on two parameter estimates using Pearson's method
Usage
pPearson(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on Pearson's method
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
pPearson(mu = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less")
Combined p-value from Tippett's method
Description
This function computes the combined p-value based on two parameter estimates using Tippett's method (also known as the minimum method)
Usage
pTippett(mu = 0, t1, t2, se1, se2, alternative = "greater")
Arguments
mu |
Null value. Defaults to |
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
Value
The combined p-value based on Tippett's method
Author(s)
Samuel Pawel
See Also
Examples
## p-value for H0: logRR = 0 in RESPIRE trials
pTippett(mu = 0, t1 = -0.491, t2 = -0.185, se1 = 0.179, se2 = 0.174,
alternative = "less")
Plot method for class "twotrials"
Description
Plot method for class "twotrials"
Usage
## S3 method for class 'twotrials'
plot(
x,
xlim = c(min(x$isummaries$lower), max(x$isummaries$upper)),
two.sided = FALSE,
plot = TRUE,
...
)
Arguments
x |
Object of class |
xlim |
x-axis limits. Defaults to the confidence interval range of trial 1 and trial 2 |
two.sided |
Logical indicating whether the p-value functions should be
converted to a two-sided p-value function via the centrality function
2min(p, 1 - p). Defaults to |
plot |
Logical indicating whether p-value functions should be plotted.
Defaults to |
... |
Other arguments (for consistency with the generic) |
Value
Plots combined p-value functions and invisibly returns a data frame containing the data underlying the plot
Author(s)
Samuel Pawel
See Also
Examples
## logRR estimates from RESPIRE trials
res <- twotrials(null = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less", level = 0.95)
plot(res) # one-sided p-value functions
plot(res, two.sided = TRUE) # two-sided p-value functions
Print method for class "twotrials"
Description
Print method for class "twotrials"
Usage
## S3 method for class 'twotrials'
print(x, digits = 3, ...)
Arguments
x |
Object of class |
digits |
Number of digits for formatting of numbers |
... |
Other arguments (for consistency with the generic) |
Value
Prints text summary in the console and invisibly returns the
"twotrials"
object
Author(s)
Samuel Pawel
See Also
Examples
## logRR estimates from RESPIRE trials
twotrials(null = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less", level = 0.95)
Combined p-value function inference for two trials
Description
This function computes combined p-values, point estimates, and confidence intervals based on two parameter estimates using fixed-effect meta-analysis, the two-trials rule, Edgington's, Fisher's, Pearson's, and Tippett's combination methods
Usage
twotrials(null = 0, t1, t2, se1, se2, alternative = "greater", level = 0.95)
Arguments
null |
Null value for which p-values should be computed. Defaults to
|
t1 |
Parameter estimate from trial 1 |
t2 |
Parameter estimate from trial 2 |
se1 |
Standard error of the parameter estimate from trial 1 |
se2 |
Standard error of the parameter estimate from trial 2 |
alternative |
One-sided alternative hypothesis. Can be either
|
level |
Confidence interval level. Defaults to |
Value
Object of class "twotrials"
, which is a list of the supplied
arguments augmented with pfuns
and ipfuns
(combined and
individual p-value functions), mufuns
and imufuns
(combined
and individual estimation functions), and summaries
and
isummaries
(combined and individual confidence intervals, point
estimates, p-values, implicit weights) elements
Author(s)
Samuel Pawel
See Also
pEdgington
, muEdgington
,
pMA
, muMA
, pTippett
,
muTippett
, p2TR
, mu2TR
,
pFisher
, muFisher
, pPearson
,
muPearson
, plot.twotrials
,
print.twotrials
Examples
## logRR estimates from RESPIRE trials
twotrials(null = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less", level = 0.95)
## compute 99.875% CIs instead
twotrials(null = 0, t1 = -0.4942, t2 = -0.1847, se1 = 0.1833, se2 = 0.1738,
alternative = "less", level = 0.99875)