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2 toweranNA-package

toweranNA-package toweranNA: a Missing-Values Method Specific to Prediction Applica-
tions

Description

A nonimputational method for handling missing values (MVs), specifically for prediction applica-
tions.

Norm Matloff (UC Davis) and Pete Mohanty (Google)

(This work was performed prior to PM’s joining Google, and is not connected to Google in any
manner.)

Overview: the Goal Is Prediction, Not Statistical Inference

There are a number of powerful R packages for handling missing values (MVs), such as Amelia
and mice. They “fill in the blanks” in MV-ridden datasets, so as to enable the user to do statistical
inference on the completed data.

These methods are typically not capable of predicting new cases that have MVs. With the tower-
anNA package, the intended class of applications is predictive modeling, rather than estimation.

Predictive methods of any type can be used with our Tower Method, including both linear/generalized
linear models and nonparametric/machine learning methods.

Usage

The function makeTower takes the data and regression model as input, and creates an object of class
‘tower’. New cases can then be predicted by calling predict() on that object.

The call forms are:

makeTower(data, yName, regFtnName, opts = NULL, scaling = NULL,
yesYVal = NULL)

predict(towerObj, newx, k = 1)

The main arguments are:

• data: The training set, a data frame or equivalent.

• yName: Name of the column containing “Y”, the variable to be predicted.

• regFtnName: Name of the regression model, currently ‘lm’, ‘glm’ or ‘towerKNN’.

• opts: Optional arguments for regFtnName.

• towerObj: Object of class “tower” returned by makeTower().

• newx: The X data to be predicted (one or more new cases).

• k, The number of nearest neighbors use in prediction. (Not the same as kmax in towerKNN.)
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The argument k is a tuning parameter chosen by the analyst.

Example: Vocabulary Acquisition

This data is from the Stanford University Wordbank project. The data, english, is included in the
toweranNA package. Of the non-administrative variables, e.g. excluding ‘Language’, which is
always English in this data, about 43 percent of the values are missing.

To illustrate how fitting and prediction occur, let’s apply Tower to fit the data and predict Y for the
cases having missing values. We will take age and gender as predictors.

data(english)

names(english)
# [1] "data_id" "age" "language" "form" "birth_order"
# [6] "ethnicity" "sex" "mom_ed" "measure" "vocab"
# [11] "demo" "n" "demo_label"

# omit administrative variables
engl1 <- english[,c(2,5:8,10)]

head(engl1)
# age birth_order ethnicity sex mom_ed vocab
# 1 24 First Asian Female Graduate 337
# 2 19 Second Black Female College 384
# 3 24 First Other Male Some Secondary 76
# 4 18 First White Male Secondary 19
# 5 24 First White Female Secondary 480
# 6 19 First Other Female Some College 313

# many MVs
sum(is.na(engl1))
# [1] 9649
# most MVs are near the end
tail(engl1)
# age birth_order ethnicity sex mom_ed vocab
# 5493 28 <NA> <NA> Male <NA> 352
# 5494 28 <NA> <NA> Female <NA> 460
# 5495 28 <NA> <NA> Male <NA> 292
# 5496 28 <NA> <NA> Female <NA> 661
# 5497 28 <NA> <NA> Female <NA> 550
# 5498 28 <NA> <NA> Male <NA> 549

# fit linear model for predictingt vocabulary size
towerOut <- makeTower(engl1,'vocab','lm')

Say we wish to predict a new case like the child in row 5, but little order, and who is second in birth
order, and for whom gender and mother’s education are missing.

newx <- engl1[5,-6]

http://wordbank.stanford.edu
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newx$age <- 28
newx$sex <- NA
newx$mom_ed <- NA
newx
# age birth_order ethnicity sex mom_ed
# 5 28 First White NA NA
predict(towerOut,newx)
# 496.9752

toweranNA: A Method Based on Regression Averaging

Setting: We have a dataset in which one of the columns, Y, is to be predicted in the future. The
remaining columns, collectively referred to as X, are the predictor variables/features. Y can be
either numeric or an R factor.

Most of the MV literature concerns estimation of some relationship, say comparison of means,
analysis of linear regression coefficients and the like. One applies some MV method to the original
data, obtaining a “filled-in” version of the data (or several such versions). One then performs one’s
statistical analysis on the new version.

By constrast, our emphasis here is on PREDICTION, especially relevant in our AI era. The main
contribution of this package is a technique that we call the Tower Method, which is directly aimed
at prediction. It is nonimputational, i.e. we do not make guesses as to the missing values in X.

Note carefully:

• In describing our methods as being for regression applications, we do NOT mean imputing
missing values through some regression technique; again, our technique is non-imputational.
Instead, our context is that of regression applications themselves, with the goal being direct
prediction of Y.

• The term regression function does not necessarily imply a linear model. It could also be, say,
a logistic model, random forests, etc.

Illustration via the vocabulary data example

Consider the above illustration, in which we wish to predict a new case in which gender and
mother’s educational level are missed. Then our prediction might be the estimated value of the
regression function of wage on age, birth order and ethnicity, i.e. the marginal regression function
of wage on that set of variables.

Since each new case to be predicted will likely have a different pattern of which variables are miss-
ing, we would need to estimate many (potentially 32) marginal regression functions. For datasets
with p predictors, 2 to the power p of these would be needed. This would in many applications
be computationally infeasible, as each marginal model would need to be fitted and run through
diagnostic plots, hyperparameter investigation, and the like.

But the Tower Property provides an alternative. It tells us that we can obtain all the marginal
regression functions from the full one.

The Tower Property

There is a theorem in abstract probability theory that says for random variables Y, U and V,

E[ E(Y|U,V) | U ] = E(Y | U)
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Though abstract, it is intuitive. Say Y, U and V are Wage, Gender and Occupation. E(Y | U,V))
is the mean wage among all workers of a given gender, in a given occupation. If we average that
quantity over men and women, but still keep occupation fixed, we obtain the mean wage in that
occupation.

In terms of regression functions, this says that if we take the regression function of Y on U and V,
and average it over V for fixed U, we get the regression function of Y on U. If V is missing but U is
known, this is very useful, as we will now explain.

How it solves our problem

In our vocabulary example above, for a new case in which age, birth order and ethnicity are known
but for whom gender and mother’s education are missing, we would have

U = (age, birth order, ethnicity) V = (gender,mom_ed)

E(Y|U) is the target marginal regression function that we wish to estimate and then use to predict
the new case in hand. The Tower Property implies that we can obtain that estimate by the averaging
process described above.

Specifically, we fit the full model to the complete cases in the data, then average that model over all
data points whose values for which the values of age, birth order and ethnicity match those in the
new case to be predicted. Thus only the full model need be estimated, rather than 2 to the power p
models.

Our package toweranNA (“tower analysis with NAs”) takes this approach. Usually, there may not be
many data points having the exact value specified for U, if any, so we average over a neighborhood
of points near that value. The argument k specifies the number of near neighbors. Since we are
averaging fitted regression estimates, which are by definition already smoothed, a small value of k
should work well.

Moreover, an early Biometrika paper by one of us (summarized in (Matloff, 2017, Sec. 7.5)) proved
that regression averaging improves estimation of means, even with no MVs, thus an added bonus.

Classification Applications
Say we wish to predict whether the child has a vocabulary of more than 100 words. Dichotomous Y
in the package must be an R factor, with the argument yesYVal specifying which level of the factor
we wish to be considered the positive case.

engl2 <- engl1
engl2$vocab <- as.factor(engl2$vocab > 100)
newx
# age birth_order ethnicity sex mom_ed
# 5 24 Second White NA NA
towerOut <- makeTower(engl2,'vocab','glm',yesYVal='TRUE')
predict(towerOut,newx)
# 0.9833677 98

Let’s try predicting birth order.

newx <- engl1[5,-2]
newx$age <- 28
newx$mom_ed <- NA
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newx
# age ethnicity sex mom_ed vocab
# 5 28 White Female NA 480
towerOut <- makeTower(engl1,'birth_order','towerKNN',opts=list(kmax=25))
predict(towerOut,newx,10)
# Eighth Fifth First Fourth Second Seventh Sixth Third
# 0 0.004 0.568 0 0.34 0 0 0.088

Application to Time Series

One can handle missing values in a time series, by converting to a data frame, then applyng Tower.

Example: Gold time series

Rob Hyndman’s forecast package includes a time series gold, consisting of 1108 daily gold prices.
The series does have some NAs, including two in the final 10 data points:

data(gold,package='forecast')
gold[1099:1108]
# [1] 395.30 394.10 393.40 396.00 NA NA 391.25 383.30 384.00 382.30

Let’s predict the 1109th data point:

towerTS(gold,5,1) # lag 5, k = 1, 'lm' etc.
# 385.2088

Internallly, the function regtools::TStoX() transforms the data to an 6-column matrix, designed for
analysis of lag 5. Column 6 then becomes Y, with columns 1:5 being X. So, the call to lm() is
loosely autoregressive, with each time point predicted from the previous 5.

Could Other MV Packages Do Prediction?

Could a predict() method be added to packages like Amelia and mice?

The answer on one level is no. The multiple imputation (MI) algorithms they use are designed
solely to “fill in the blanks” in the training data. There is nothing in the algorithms on dealing with
MVs in new cases.

On the other hand, some remedies are possible:

• Each time we are presented with a new case having MVs, we could add it to the original
training data, with Y also treated as an MV. We could then rerun the MI algorithm, and the
filled-in spot for the new Y would be our predicted value. (With multiple imputations, we
could, say, take the mean of the filled-in Ys. Of course, this would have the drawback of
entailing large increases in computation.

• Each time we are presented with a new case having MVs, we could find the nearest filled-
in row in the training set, and take its Y value as our prediction for the new case. (Or look
at k near neighbors and average their Ys.) As we do here with Tower, distances would be
calculated on the basis of the intact values in the new case.
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Thus Amelia, mice etc. could be “Tower-ized”. They would not have the central focus on Y that
Tower has, but reasonable predict() methods could be developed for them via Tower-ization.

Intuition might suggest that such an approach may be less accurate in predicting Y, as the MI
algorithms are in essence devoting the data resources to predicting all columns simultaneously.
This would make an interesting avenue for research, and we will be adding Tower-ization methods
for Amelia etc.

Also, what about regression functions and packages that do focus on predicting Y and do allow
missing X values in the training data? Random forests packages such as randomForest and grf
come to mind. But again, these tolerate MVs at the training stage but not in new cases.

Assumptions

Compared to most MV packages, toweranNA has far less restrictive assumptions. E.g. Amelia
assumes multivariate normality of the X vector, an assumption not even approximately met when
some components of X are categorical variables. The mice package has extensive features for
handling such cases, but there are still attendant assumptions involved.

Both of those packages, and most others, make the standard Missing at Random (MAR) assumption.
What about Tower?

In our Tower Method, the assumption involves Y:

E(Y | U, V <- NA) = E(Y | U)

where VNA is a boolean variable symbolizing that the variables in V are missing.

This assumption is neither implies nor is implied by MAR, but it is similar to that condition. As
with MAR, this assumption is not verifiable, but in prediction applicants, the assumption are not so
vital. We simply ask, “Does it work?”, meaning how well does it predict new cases? And that is
verifiable, via cross-validation.

*Reference:*

Statistical Regression and Classification: from Linear Models to Machine Learning, N. Matloff,
Chapman and Hall, 2017.

english English vocabulary data

Description

The Stanford WordBank data on vocabulary acquisition in young children. The file consists of
about 5500 rows. There are many NA values, though, and only about 2800 complete cases. The
main variables are age, birth order, sex, mother’s education and vocabulary size.
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makeTower Nonimputational method for dealing with NA values in prediction ap-
plication

Description

In a prediction application, the intended regression model is applied to complete cases, from which
marginal regression models can be derived for predicting new cases having arbitrary NA patterns.

Usage

makeTower(data,yName,regFtnName,opts,scaling=NULL,yesYVal=NULL)
## S3 method for class 'tower'
predict(object,newx,k=1,...)

Arguments

data Data frame or equivalent.

yName Name of the column in data to be predicted.

regFtnName Regression model to be used, currently ’lm’, ’glm’ (family=binomial), or
’towerKNN’.

opts Optional arguments for regFtnName, an R list.

k number of nearest neighbors

scaling Scaling to be applied to x and newx. Default NULL means no scaling.

yesYVal In the case of dichotomous Y, this specifies the level to be considered positive,
i.e. for which Y will be 1.

object Object of type ’tower’.

newx New case(s) to be predicted, in the same format as in the non-Y portion of data.

... Other arguments need by regFtnName.

Value

Object of class ’tower’, to be used as input to predict.tower.

Author(s)

Norm Matloff, Pete Mohanty

Examples

towerOut <- makeTower(mtcars,'mpg','lm')

newx <- mtcars[-c(1:10),-1]
for(i in 1:10)

newx[i, i] <- NA
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head(newx)
# cyl disp hp drat wt qsec vs am gear carb
# Merc 280C NA 167.6 123 3.92 3.440 18.90 1 0 4 4
# Merc 450SE 8 NA 180 3.07 4.070 17.40 0 0 3 3
# Merc 450SL 8 275.8 NA 3.07 3.730 17.60 0 0 3 3
# Merc 450SLC 8 275.8 180 NA 3.780 18.00 0 0 3 3
# Cadillac Fleetwood 8 472.0 205 2.93 NA 17.98 0 0 3 4
# Lincoln Continental 8 460.0 215 3.00 5.424 NA 0 0 3 4

predict(towerOut,newx,k=3)
# [1] 20.00086 15.17132 15.17132 15.17132 11.15469 11.15469 11.15469 28.52625
# [9] 29.06067 28.52625 24.72144 17.45622 16.75827 15.52077 14.95958 28.52625
# [17] 25.34890 26.08506 15.52077 19.19484 15.37239 24.72144

towerTS Tower for Times Series

Description

Fits a linear model or other regression method to to lagged elements, using the Tower approach.
Here k is the number of nearest neighbors as in toweranNA. Currently predicts only the component
that is just past the end of the data.

Usage

towerTS(xts,lag,k,regFtnName='lm')

Arguments

xts A time series.

lag Lag. A positive integer.

regFtnName Regression model to be used, currently ’lm’, ’glm’ (family=binomial), or
’towerKNN’.

k k nearest neighbors

Details

See ?towerLM and ?regtools::TStoX

Value

Predicted value for the next item in the series.

Author(s)

Norm Matloff, Pete Mohanty
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Examples

# create noisy cylcic series
set.seed(2020)
x <- rnorm(1000)
x <- runif(1000) * sin(x) + rnorm(1000)
w <- x
# introduce 10 percent missingness
x[sample(1000, 100)] <- NA
# make predictions with lag 3 using k=4 nearest neighbors
towerTS(x, lag=10, k=4)
# -0.1685019
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