
Package ‘tmaptools’
July 24, 2025

Type Package

Title Thematic Map Tools

Version 3.3

Description
Set of tools for reading and processing spatial data. The aim is to supply the workflow to cre-
ate thematic maps. This package also facilitates 'tmap', the package for visualizing thematic maps.

License GPL-3

Encoding UTF-8

Depends R (>= 3.5), methods

Imports sf (>= 0.9.2), lwgeom (>= 0.1-4), stars (>= 0.4-1), units (>=
0.6-1), stats, XML

Suggests tmap, cols4all, rmapshaper, osmdata, OpenStreetMap, raster

URL https://github.com/r-tmap/tmaptools,

https://r-tmap.github.io/tmaptools/

BugReports https://github.com/r-tmap/tmaptools/issues

RoxygenNote 7.3.2

NeedsCompilation no

Author Martijn Tennekes [aut, cre]

Maintainer Martijn Tennekes <mtennekes@gmail.com>

Repository CRAN

Date/Publication 2025-07-24 16:10:02 UTC

Contents
tmaptools-package . 2
approx_areas . 3
approx_distances . 5
bb . 6
bb_poly . 9

1

https://github.com/r-tmap/tmaptools
https://r-tmap.github.io/tmaptools/
https://github.com/r-tmap/tmaptools/issues

2 tmaptools-package

calc_densities . 10
crop_shape . 12
geocode_OSM . 13
get_asp_ratio . 15
get_neighbours . 16
map_coloring . 16
read_GPX . 17
read_osm . 18
rev_geocode_OSM . 20
simplify_shape . 21

Index 23

tmaptools-package Thematic Map Tools

Description

This package offers a set of handy tool functions for reading and processing spatial data. The
aim of these functions is to supply the workflow to create thematic maps, e.g. read shape files,
set map projections, append data, calculate areas and distances, and query OpenStreetMap. The
visualization of thematic maps can be done with the tmap package.

Details

This page provides a brief overview of all package functions.

Tool functions (shape)

approx_areas Approximate area sizes of polygons
approx_distances Approximate distances
bb Create, extract or modify a bounding box
bb_poly Convert bounding box to a polygon
get_asp_ratio Get the aspect ratio of a shape object
————————— —————————————————————————————————

Tool functions (colors)

map_coloring Find different colors for adjacent polygons
————————— —————————————————————————————————

approx_areas 3

Spatial transformation functions

crop_shape Crop shape objects
simplify_shape Simplify a shape
————————— —————————————————————————————————

Input and output functions

geocode_OSM Get a location from an address description
read_GPX Read a GPX file
read_osm Read Open Street Map data
rev_geocode_OSM Get an address description from a location
————————— —————————————————————————————————

Author(s)

Maintainer: Martijn Tennekes <mtennekes@gmail.com>

See Also

Useful links:

• https://github.com/r-tmap/tmaptools

• https://r-tmap.github.io/tmaptools/

• Report bugs at https://github.com/r-tmap/tmaptools/issues

approx_areas Approximate area sizes of the shapes

Description

Approximate the area sizes of the polygons in real-world area units (such as sq km or sq mi),
proportional numbers, or normalized numbers. Also, the areas can be calibrated to a prespecified
area total. This function is a convenient wrapper around st_area.

Usage

approx_areas(shp, target = "metric", total.area = NULL)

https://github.com/r-tmap/tmaptools
https://r-tmap.github.io/tmaptools/
https://github.com/r-tmap/tmaptools/issues

4 approx_areas

Arguments

shp shape object, i.e., an sf or sp object.

target target unit, one of

"prop": Proportional numbers. In other words, the sum of the area sizes equals
one.

"norm": Normalized numbers. All area sizes are normalized to the largest area,
of which the area size equals one.

"metric" (default): Output area sizes will be either "km" (kilometer) or "m"
(meter) depending on the map scale

"imperial": Output area sizes will be either "mi" (miles) or "ft" (feet) de-
pending on the map scale

other: Predefined values are "km^2", "m^2", "mi^2", and "ft^2". Other values
can be specified as well, in which case to is required).

These units are the output units. See orig for the coordinate units used by the
shape shp.

total.area total area size of shp in number of target units (defined by target). Useful if
the total area of the shp differs from a reference total area value. For "metric"
and "imperial" units, please provide the total area in squared kilometers re-
spectively miles.

Details

Note that the method of determining areas is an approximation, since it depends on the used projec-
tion and the level of detail of the shape object. Projections with equal-area property are highly rec-
ommended. See https://en.wikipedia.org/wiki/List_of_map_projections for equal area
world map projections.

Value

Numeric vector of area sizes (class units).

See Also

approx_distances

Examples

if (require(tmap)) {
data(NLD_muni)

NLD_muni$area <- approx_areas(NLD_muni, total.area = 33893)

tm_shape(NLD_muni) +
tm_bubbles(size="area",

size.legend = tm_legend(title = expression("Area in " * km^2)))

function that returns min, max, mean and sum of area values

https://en.wikipedia.org/wiki/List_of_map_projections

approx_distances 5

summary_areas <- function(x) {
list(min_area=min(x),

max_area=max(x),
mean_area=mean(x),
sum_area=sum(x))

}

area of the polygons
summary_areas(approx_areas(NLD_muni))

area of the polygons, adjusted corrected for a specified total area size
summary_areas(approx_areas(NLD_muni, total.area=33893))

proportional area of the polygons
summary_areas(approx_areas(NLD_muni, target = "prop"))

area in squared miles
summary_areas(approx_areas(NLD_muni, target = "mi mi"))

area of the polygons when unprojected
summary_areas(approx_areas(sf::st_transform(NLD_muni, crs = 4326)))

}

approx_distances Approximate distances

Description

Approximate distances between two points or across the horizontal and vertical centerlines of a
bounding box.

Usage

approx_distances(x, y = NULL, projection = NULL, target = NULL)

Arguments

x object that can be coerced to a bounding box with bb, or a pair of coordintes
(vector of two). In the former case, the distance across the horizontal and vertical
centerlines of the bounding box are approximated. In the latter case, y is also
required; the distance between points x and y is approximated.

y a pair of coordintes, vector of two. Only required when x is also a pair of
coordintes.

projection projection code, needed in case x is a bounding box or when x and y are pairs of
coordinates.

target target unit, one of: "m", "km", "mi", and "ft".

6 bb

Value

If y is specifyed, a list of two: unit and dist. Else, a list of three: unit, hdist (horizontal distance)
and vdist (vertical distance).

See Also

approx_areas

Examples

Not run:
if (require(tmap)) {

data(NLD_prov)

North-South and East-West distances of the Netherlands
approx_distances(NLD_prov)

Distance between Maastricht and Groningen
p_maastricht <- geocode_OSM("Maastricht")$coords
p_groningen <- geocode_OSM("Groningen")$coords
approx_distances(p_maastricht, p_groningen, projection = 4326, target = "km")

Check distances in several projections
sapply(c(3035, 28992, 4326), function(projection) {

p_maastricht <- geocode_OSM("Maastricht", projection = projection)$coords
p_groningen <- geocode_OSM("Groningen", projection = projection)$coords
approx_distances(p_maastricht, p_groningen, projection = projection)

})
}

End(Not run)

bb Bounding box generator

Description

Swiss army knife for bounding boxes. Modify an existing bounding box or create a new bounding
box from scratch. See details.

Usage

bb(
x = NA,
ext = NULL,
cx = NULL,
cy = NULL,
width = NULL,
height = NULL,

bb 7

xlim = NULL,
ylim = NULL,
relative = FALSE,
asp.target = NULL,
asp.limit = NULL,
current.projection = NULL,
projection = NULL,
output = c("bbox", "matrix", "extent")

)

Arguments

x One of the following:

• A shape from class sf, stars, sp, or raster.
• A bounding box (st_bbox, Extent (raster package, which will no longer

be supported in the future versions), numeric vector of 4 (default order:
xmin, ymin, xmax, ymax), or a 2x2 matrix).

• Open Street Map search query. The bounding is automatically generated by
querying x from Open Street Map Nominatim. See geocode_OSM

.

ext Extension factor of the bounding box. If 1, the bounding box is unchanged. Val-
ues smaller than 1 reduces the bounding box, and values larger than 1 enlarges
the bounding box. This argument is a shortcut for both width and height with
relative=TRUE. If a negative value is specified, then the shortest side of the
bounding box (so width or height) is extended with ext, and the longest side is
extended with the same absolute value. This is especially useful for bounding
boxes with very low or high aspect ratios.

cx center x coordinate

cy center y coordinate

width width of the bounding box. These are either absolute or relative (depending on
the argument relative).

height height of the bounding box. These are either absolute or relative (depending on
the argument relative).

xlim limits of the x-axis. These are either absolute or relative (depending on the
argument relative).

ylim limits of the y-axis. See xlim.

relative boolean that determines whether relative values are used for width, height,
xlim and ylim or absolute. If x is unspecified, relative is set to "FALSE".

asp.target target aspect ratio, which is width/height, of the returned bounding box.

asp.limit maximum aspect ratio, which is width/height. Number greater than or equal
to 1. For landscape bounding boxes, 1/asp.limit will be used. The returned
bounding box will have an aspect ratio between 1/asp.limit and asp.limit.

current.projection

projection that corresponds to the bounding box specified by x.

8 bb

projection projection to transform the bounding box to.

output output format of the bounding box, one of:

• "bbox" a sf::bbox object, which is a numeric vector of 4: xmin, ymin,
xmax, ymax. This representation used by the sf package.

• "matrix" a 2 by 2 numeric matrix, where the rows correspond to x and
y, and the columns to min and max. This representation used by the sp
package.

• "extent" an raster::extent object, which is a numeric vector of 4:
xmin, xmax, ymin, ymax. This representation used by the raster pack-
age.

Details

An existing bounding box (defined by x) can be modified as follows:

• Using the extension factor ext.

• Changing the width and height with width and height. The argument relavitve determines
whether relative or absolute values are used.

• Setting the x and y limits. The argument relavitve determines whether relative or absolute
values are used.

A new bounding box can be created from scratch as follows:

• Using the extension factor ext.

• Setting the center coorinates cx and cy, together with the width and height.

• Setting the x and y limits xlim and ylim

Value

bounding box (see argument output)

See Also

geocode_OSM

Examples

if (require(tmap)) {

load shapes
data(NLD_muni)
data(World)

get bounding box (similar to sp's function bbox)
bb(NLD_muni)

extent it by factor 1.10
bb(NLD_muni, ext=1.10)

bb_poly 9

double the width
bb(NLD_muni, width=2, relative = TRUE)

crop both dimensions from 0.25 to 0.75
bb(NLD_muni, xlim=c(.25, .75), ylim=c(.25, .75), relative = TRUE)

extent it such that aspect ratio is 1
bb(NLD_muni, asp.target = 1)

convert to longlat (EPSG 4326)
bb(NLD_muni, projection=4326)

}

Not run:
if (require(tmap)) {

bb("Limburg", projection = 28992)
bb_italy <- bb("Italy", projection = "+proj=eck4")

tm_shape(World, bbox=bb_italy) + tm_polygons()
shorter alternative: tm_shape(World, bbox="Italy") + tm_polygons()

}
End(Not run)

bb_poly Convert bounding box to a spatial polygon

Description

Convert bounding box to a spatial (sfc) object . Useful for plotting (see example). The function
bb_earth returns a spatial polygon of the ’boundaries’ of the earth, which can also be done in other
projections (if a feasible solution exists).

Usage

bb_poly(x, steps = 100, stepsize = NA, projection = NULL)

bb_earth(
projection = NULL,
stepsize = 1,
earth.datum = 4326,
bbx = c(-180, -90, 180, 90),
buffer = 1e-06

)

Arguments

x object that can be coerced to a bounding box with bb

10 calc_densities

steps number of intermediate points along the shortest edge of the bounding box. The
number of intermediate points along the longest edge scales with the aspect
ratio. These intermediate points are needed if the bounding box is plotted in
another projection.

stepsize stepsize in terms of coordinates (usually meters when the shape is projected and
degrees of longlat coordinates are used). If specified, it overrules steps

projection projection in which the coordinates of x are provided. For bb_earth, projection
is the projection in which the bounding box is returned (if possible).

earth.datum Geodetic datum to determine the earth boundary. By default EPSG 4326.

bbx boundig box of the earth in a vector of 4 values: min longitude, max longi-
tude, min latitude, max latitude. By default c(-180, 180, -90, 90). If for
some projection, a feasible solution does not exist, it may be wise to choose a
smaller bbx, e.g. c(-180, 180, -88, 88). However, this is also automatically
done with the next argument, buffer.

buffer In order to determine feasible earth bounding boxes in other projections, a buffer
is used to decrease the bounding box by a small margin (default 1e-06). This
value is subtracted from each the bounding box coordinates. If it still does not
result in a feasible bounding box, this procedure is repeated 5 times, where each
time the buffer is multiplied by 10. Set buffer=0 to disable this procedure.

Value

sfc object

Examples

if (require(tmap) && packageVersion("tmap") >= "2.0") {
data(NLD_muni)

current.mode <- tmap_mode("view")
qtm(bb_poly(NLD_muni))

restore mode
tmap_mode(current.mode)

}

calc_densities Calculate densities

Description

Transpose quantitative variables to densitiy variables, which are often needed for choroplets. For
example, the colors of a population density map should correspond population density counts rather
than absolute population numbers.

calc_densities 11

Usage

calc_densities(
shp,
var,
target = "metric",
total.area = NULL,
suffix = NA,
drop = TRUE

)

Arguments

shp a shape object, i.e., an sf object.

var name(s) of a qualtity variable name contained in the shp data

target the target unit, see approx_areas. Density values are calculated in var/target^2.

total.area total area size of shp in number of target units (defined by unit), approx_areas.

suffix character that is appended to the variable names. The resulting names are used
as column names of the returned data.frame. By default, _sq_<target>, where
target corresponds to the target unit, e.g. _sq_km

drop boolean that determines whether an one-column data-frame should be returned
as a vector

Value

Vector or data.frame (depending on whether length(var)==1 with density values.

Examples

if (require(tmap) && packageVersion("tmap") >= "3.99") {
data(NLD_muni)

NLD_muni_pop_per_km2 <- calc_densities(NLD_muni,
target = "km km", var = c("population", "dwelling_total"))

NLD_muni <- sf::st_sf(data.frame(NLD_muni, NLD_muni_pop_per_km2))

tm_shape(NLD_muni) +
tm_polygons(
fill = c("population_km.2", "dwelling_total_km.2"),
fill.legend =

list(
tm_legend(expression("Population per " * km^2)),
tm_legend(expression("Dwellings per " * km^2)))) +

tm_facets(free.scales = TRUE) +
tm_layout(panel.show = FALSE)

}

12 crop_shape

crop_shape Crop shape object

Description

Crop a shape object (from class sf, stars, sp, or raster). A shape file x is cropped, either by
the bounding box of another shape y, or by y itself if it is a SpatialPolygons object and polygon =
TRUE.

Usage

crop_shape(x, y, polygon = FALSE, ...)

Arguments

x shape object, i.e. an object from class sf, stars, sp, or raster.

y bounding box, an st_bbox, extent (raster package), or a shape object from
which the bounding box is extracted (unless polygon is TRUE and x is an sf
object).

polygon should x be cropped by the polygon defined by y? If FALSE (default), x is
cropped by the bounding box of x. Polygon cropping only works when x is
a spatial object and y is a SpatialPolygons object.

... not used anymore

Details

This function is similar to crop from the raster package. The main difference is that crop_shape
also allows to crop using a polygon instead of a rectangle.

Value

cropped shape, in the same class as x

See Also

bb

Examples

if (require(tmap) && packageVersion("tmap") >= "3.99") {
data(World, NLD_muni, land, metro)

#land_NLD <- crop_shape(land, NLD_muni)

#qtm(land_NLD, raster="trees", style="natural")

metro_Europe <- crop_shape(metro, World[World$continent == "Europe",], polygon = TRUE)

geocode_OSM 13

qtm(World) +
tm_shape(metro_Europe) +
tm_bubbles("pop2010",

col="red",
size.legend = tm_legend("European cities")) +

tm_legend(frame=TRUE)
}

geocode_OSM Geocodes a location using OpenStreetMap Nominatim

Description

Geocodes a location (based on a search query) to coordinates and a bounding box. Similar to
geocode from the ggmap package. It uses OpenStreetMap Nominatim. For processing large amount
of queries, please read the usage policy (https://operations.osmfoundation.org/policies/
nominatim/).

Usage

geocode_OSM(
q,
projection = NULL,
return.first.only = TRUE,
keep.unfound = FALSE,
details = FALSE,
as.data.frame = NA,
as.sf = FALSE,
geometry = c("point", "bbox"),
server = "https://nominatim.openstreetmap.org"

)

Arguments

q a character (vector) that specifies a search query. For instance "India" or "CBS
Weg 11, Heerlen, Netherlands".

projection projection in which the coordinates and bounding box are returned. See st_crs
for details. By default latitude longitude coordinates (EPSG 4326).

return.first.only

Only return the first result

keep.unfound Keep list items / data.frame rows with NAs for unfound search terms. By default
FALSE

details provide output details, other than the point coordinates and bounding box

as.data.frame Return the output as a data.frame. If FALSE, a list is returned with at least two
items: "coords", a vector containing the coordinates, and "bbox", the corre-
sponding bounding box. By default false, unless q contains multiple queries. If
as.sf = TRUE (see below), as.data.frame will set to TRUE.

https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/

14 geocode_OSM

as.sf Return the output as sf object. If TRUE, return.first.only will be set to TRUE.
Two geometry columns are added: bbox and point. The argument geometry
determines which of them is set to the default geometry.

geometry When as.sf, this argument determines which column (bbox or point) is set
as geometry column. Note that the geometry can be changed afterwards with
st_set_geometry.

server OpenStreetMap Nominatim server name. Could also be a local OSM Nomina-
tim server.

Value

If as.sf then a sf object is returned. Else, if as.data.frame, then a data.frame is returned, else
a list.

See Also

rev_geocode_OSM, bb

Examples

Not run:
if (require(tmap)) {

geocode_OSM("India")
geocode_OSM("CBS Weg 1, Heerlen")
geocode_OSM("CBS Weg 1, Heerlen", projection = 28992)

data(metro)

sample 5 cities from the metro dataset
five_cities <- metro[sample(length(metro), 5),]

obtain geocode locations from their long names
five_cities_geocode <- geocode_OSM(five_cities$name_long, as.sf = TRUE)

change to interactive mode
current.mode <- tmap_mode("view")

plot metro coordinates in red and geocode coordinates in blue
zoom in to see the differences
tm_shape(five_cities) +
tm_dots(col = "blue") +
tm_shape(five_cities_geocode) +
tm_dots(col = "red")

restore current mode
tmap_mode(current.mode)

}

End(Not run)

get_asp_ratio 15

get_asp_ratio Get aspect ratio

Description

Get the aspect ratio of a shape object, a tmap object, or a bounding box

Usage

get_asp_ratio(x, is.projected = NA, width = 700, height = 700, res = 100)

Arguments

x A shape from class sf, stars, sp, or Raster, a bounding box (that can be
coerced by bb), or a tmap object.

is.projected Logical that determined wether the coordinates of x are projected (TRUE) or lon-
gitude latitude coordinates (FALSE). By deafult, it is determined by the coordi-
nates of x.

width See details; only applicable if x is a tmap object.
height See details; only applicable if x is a tmap object.
res See details; only applicable if x is a tmap object.

Details

The arguments width, height, and res are passed on to png. If x is a tmap object, a temporarily
png image is created to calculate the aspect ratio of a tmap object. The default size of this image is
700 by 700 pixels at 100 dpi.

Value

aspect ratio

Examples

if (require(tmap) && packageVersion("tmap") >= "2.0") {
data(World)

get_asp_ratio(World)

get_asp_ratio(bb(World))

tm <- qtm(World)
get_asp_ratio(tm)

}

Not run:
get_asp_ratio("Germany") #note: bb("Germany") uses geocode_OSM("Germany")

End(Not run)

16 map_coloring

get_neighbours Get neighbours list from spatial objects

Description

Get neighbours list from spatial objects. The output is similar to the function poly2nb of the spdep
package, but uses sf instead of sp.

Usage

get_neighbours(x)

Arguments

x a shape object, i.e., a sf object or a SpatialPolygons(DataFrame) (sp pack-
age).

Value

A list where the items correspond to the features. Each item is a vector of neighbours.

map_coloring Map coloring

Description

Color the polygons of a map such that adjacent polygons have different colors. This function returns
the color indices

Usage

map_coloring(x, algorithm = "greedy", ncols = 8, minimize = FALSE, ...)

Arguments

x Either a shape (i.e. a sf or SpatialPolygons(DataFrame) (sp package) ob-
ject), or an adjacency list.

algorithm currently, only "greedy" is implemented.

ncols number of colors. By default 8.

minimize logical that determines whether algorithm will search for a minimal number of
colors. If FALSE, the ncols colors will be picked by a random procedure.

... to catch deprecated arguments palette and contrast. See details.

read_GPX 17

Details

As of tmaptools 3.3, the deprecated color functions get_brewer_pal and palette_explorer, have
been removed. These have been replaced c4a and c4a_gui respectively from the package cols4all.
Therefore, map_coloring will return color indices and will ignore the input arguments palette
and contrast. See example.

Value

A vector of color indices.

Examples

if (require(tmap) && require(cols4all)) {
data(World)

using cols4all directly
indices <- map_coloring(World)
pal <- c4a("brewer.set2", n = max(indices))
World$color = pal[indices]
tm_shape(World) +

tm_polygons("color", fill.scale = tm_scale_asis()) +
tm_crs("auto")

using map_coloring via "MAP_COLORS" in tmap
tm_shape(World) +

tm_polygons("MAP_COLORS", tm_scale(values = "brewer.set2")) +
tm_crs("auto")

other example
data(NLD_prov, NLD_muni)
tm_shape(NLD_prov) +
tm_fill("name",

fill.legend = tm_legend_hide()) +
tm_shape(NLD_muni) +
tm_polygons("MAP_COLORS",

fill_alpha = .25,
fill.scale = tm_scale(values = "brewer.greys")) +

tm_shape(NLD_prov) +
tm_borders(lwd=2) +
tm_text("name", options = opt_tm_text(shadow = TRUE)) +
tm_title("Dutch provinces and\nmunicipalities", bg.color="white")

}

read_GPX Read GPX file

18 read_osm

Description

Read a GPX file. By default, it reads all possible GPX layers, and only returns shapes for layers
that have any features.

Usage

read_GPX(
file,
layers = c("waypoints", "routes", "tracks", "route_points", "track_points"),
remove.empty.layers = TRUE,
as.sf = TRUE

)

Arguments

file a GPX filename (including directory)

layers vector of GPX layers. Possible options are "waypoints", "tracks", "routes",
"track_points", "route_points". By dedault, all those layers are read.

remove.empty.layers

should empty layers (i.e. with 0 features) be removed from the list?

as.sf not used anymore

Details

Note that this function returns sf objects, but still uses methods from sp and rgdal internally.

Value

a list of sf objects, one for each layer

read_osm Read Open Street Map data

Description

Read Open Street Map data. OSM tiles are read and returned as a spatial raster. Vectorized OSM
data is not supported anymore (see details).

Usage

read_osm(
x,
zoom = NULL,
type = "osm",
minNumTiles = NULL,
mergeTiles = NULL,

read_osm 19

use.colortable = FALSE,
...

)

Arguments

x object that can be coerced to a bounding box with bb (e.g. an existing bounding
box or a shape). In the first case, other arguments can be passed on to bb (see
...). If an existing bounding box is specified in projected coordinates, plesae
specify current.projection.

zoom passed on to openmap. Only applicable when raster=TRUE.

type tile provider, by default "osm", which corresponds to OpenStreetMap Mapnik.
See openmap for options. Only applicable when raster=TRUE.

minNumTiles passed on to openmap Only applicable when raster=TRUE.

mergeTiles passed on to openmap Only applicable when raster=TRUE.

use.colortable should the colors of the returned raster object be stored in a colortable? If
FALSE, a RasterStack is returned with three layers that correspond to the red,
green and blue values betweeen 0 and 255.

... arguments passed on to bb.

Details

As of version 2.0, read_osm cannot be used to read vectorized OSM data anymore. The reason
is that the package that was used under the hood, osmar, has some limitations and is not actively
maintained anymore. Therefore, we recommend the package osmdata. Since this package is very
user-friendly, there was no reason to use read_osm as a wrapper for reading vectorized OSM data.

Value

The output of read_osm is a raster object.

Examples

Not run:
if (require(tmap)) {

Choropleth with OSM background

load Netherlands shape
data(NLD_muni)

read OSM raster data
osm_NLD <- read_osm(NLD_muni, ext=1.1)

plot with regular tmap functions
tm_shape(osm_NLD) +
tm_rgb() +
tm_shape(NLD_muni) +
tm_polygons("population", convert2density=TRUE, style="kmeans", alpha=.7, palette="Purples")

20 rev_geocode_OSM

A close look at the building of Statistics Netherlands in Heerlen

create a bounding box around the CBS (Statistics Netherlands) building
CBS_bb <- bb("CBS Weg 11, Heerlen", width=.003, height=.002)

read Microsoft Bing satellite and OpenCycleMap OSM layers
CBS_osm1 <- read_osm(CBS_bb, type="bing")
CBS_osm2 <- read_osm(CBS_bb, type="opencyclemap")

plot OSM raster data
qtm(CBS_osm1)
qtm(CBS_osm2)

}

End(Not run)

rev_geocode_OSM Reverse geocodes a location using OpenStreetMap Nominatim

Description

Reverse geocodes a location (based on spatial coordinates) to an address. It uses OpenStreetMap
Nominatim. For processing large amount of queries, please read the usage policy (https://
operations.osmfoundation.org/policies/nominatim/).

Usage

rev_geocode_OSM(
x,
y = NULL,
zoom = NULL,
projection = 4326,
as.data.frame = NA,
server = "https://nominatim.openstreetmap.org",
params = NULL

)

Arguments

x x coordinate(s), or a spatial points object (sf or SpatialPoints)

y y coordinate(s)

zoom zoom level

projection projection in which the coordinates x and y are provided.

as.data.frame return as data.frame (TRUE) or list (FALSE). By default a list, unless multiple
coordinates are provided.

https://operations.osmfoundation.org/policies/nominatim/
https://operations.osmfoundation.org/policies/nominatim/

simplify_shape 21

server OpenStreetMap Nominatim server name. Could also be a local OSM Nomina-
tim server.

params Additional parameters to pass to server. (must start with &), ex: "&accept-
language=en" to return english rather than local language results.

Value

A data frame or a list with all attributes that are contained in the search result

See Also

geocode_OSM

Examples

Not run:
if (require(tmap)) {

data(metro)

sample five cities from metro dataset
set.seed(1234)
five_cities <- metro[sample(length(metro), 5),]

obtain reverse geocode address information
addresses <- rev_geocode_OSM(five_cities, zoom = 6)
five_cities <- sf::st_sf(data.frame(five_cities, addresses))

change to interactive mode
current.mode <- tmap_mode("view")
tm_shape(five_cities) +
tm_markers(text="name")

restore current mode
tmap_mode(current.mode)

}

End(Not run)

simplify_shape Simplify shape

Description

Simplify a shape consisting of polygons or lines. This can be useful for shapes that are too detailed
for visualization, especially along natural borders such as coastlines and rivers. The number of
coordinates is reduced.

Usage

simplify_shape(shp, fact = 0.1, keep.units = FALSE, keep.subunits = FALSE, ...)

22 simplify_shape

Arguments

shp an sf or sfc object.

fact simplification factor, number between 0 and 1 (default is 0.1)

keep.units prevent small polygon features from disappearing at high simplification (default
FALSE)

keep.subunits should multipart polygons be converted to singlepart polygons? This prevents
small shapes from disappearing during simplification if keep.units = TRUE. De-
fault FALSE

... other arguments passed on to the underlying function ms_simplify (except for
the arguments input, keep, keep_shapes and explode)

Details

This function is a wrapper of ms_simplify. In addition, the data is preserved. Also sf objects are
supported.

Value

sf object

Examples

Not run:
if (require(tmap)) {

data(World)

show different simplification factors
tm1 <- qtm(simplify_shape(World, fact = 0.05), title="Simplify 0.05")
tm2 <- qtm(simplify_shape(World, fact = 0.1), title="Simplify 0.1")
tm3 <- qtm(simplify_shape(World, fact = 0.2), title="Simplify 0.2")
tm4 <- qtm(simplify_shape(World, fact = 0.5), title="Simplify 0.5")
tmap_arrange(tm1, tm2, tm3, tm4)

show different options for keeping smaller (sub)units
tm5 <- qtm(simplify_shape(World, keep.units = TRUE, keep.subunits = TRUE),

title="Keep units and subunits")
tm6 <- qtm(simplify_shape(World, keep.units = TRUE, keep.subunits = FALSE),

title="Keep units, ignore small subunits")
tm7 <- qtm(simplify_shape(World, keep.units = FALSE),

title="Ignore small units and subunits")
tmap_arrange(tm5, tm6, tm7)

}

End(Not run)

Index

∗ GIS
tmaptools-package, 2

∗ densities
calc_densities, 10

∗ spatial data
tmaptools-package, 2

∗ thematic maps
tmaptools-package, 2

approx_areas, 2, 3, 6, 11
approx_distances, 2, 4, 5

bb, 2, 5, 6, 9, 12, 14, 15, 19
bb_earth (bb_poly), 9
bb_poly, 2, 9

calc_densities, 10
colortable, 19
crop_shape, 3, 12

geocode_OSM, 3, 7, 8, 13, 21
get_asp_ratio, 2, 15
get_neighbours, 16

map_coloring, 2, 16
ms_simplify, 22

openmap, 19

png, 15

raster, 19
read_GPX, 3, 17
read_osm, 3, 18
rev_geocode_OSM, 3, 14, 20

sf, 4, 7, 8, 11, 12, 14–16, 18, 20, 22
sfc, 9, 10, 22
simplify_shape, 3, 21
SpatialPoints, 20
st_area, 3

st_bbox, 7, 12
st_crs, 13
st_set_geometry, 14
stars, 7, 12, 15

tmap, 15
tmaptools (tmaptools-package), 2
tmaptools-package, 2

units, 4

23

	tmaptools-package
	approx_areas
	approx_distances
	bb
	bb_poly
	calc_densities
	crop_shape
	geocode_OSM
	get_asp_ratio
	get_neighbours
	map_coloring
	read_GPX
	read_osm
	rev_geocode_OSM
	simplify_shape
	Index

