Title: | Tables of Clinical Study |
Version: | 1.1.2 |
Description: | Creates some tables of clinical study. 'Table 1' is created by table1() to describe baseline characteristics, which is essential in every clinical study. Created by table2(), the function of 'Table 2' is to explore influence factors. And 'Table 3' created by table3() is able to make stratified analysis. |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.1 |
Imports: | survival, stats, lmtest, mgcv, nortest, tableone |
NeedsCompilation: | no |
Packaged: | 2022-04-08 01:04:00 UTC; mac |
Author: | Jian Hang Zheng [aut, cre], Yong Qi Chen [aut] |
Maintainer: | Jian Hang Zheng <1040854241@qq.com> |
Repository: | CRAN |
Date/Publication: | 2022-04-08 02:40:02 UTC |
Split a Variable by Custom Values
Description
Split a continuous variable by custom values. Converts a continuous variable to a categorical variable.
Usage
div_custom(var, div, data)
Arguments
var |
A string. A variable to be summarized given as a string. |
div |
A numeric vector. The variable can be split into at least two levels by custom values. |
data |
A data frame in which these variables exist. |
Value
A factor variable.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##
div_custom(var = 'age',div = c(40,60),data = pbc)
Split a Variable by Quantile Statistics
Description
Split a continuous variable by quantile statistics. Converts a continuous variable to a categorical variable.
Usage
div_quantile(var, div, data)
Arguments
var |
A string. A variable to be summarized given as a string. |
div |
A positive integer greater than 1 or a vector of integers. If a positive integer greater than 1, it is the number of factor levels when the variable is split by quantile statistics. If a vector of integers, it is the strategy of grouping x by quantile statistics and then merging groups. |
data |
A data frame in which these variables exist. |
Value
A factor variable.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##
div_quantile(var = 'age', div = 5, data = pbc)
div_quantile(var = 'age', div = c(2,3), data = pbc)
Ensure Factor Variable in Data Set
Description
Ensure that factor variables in data set are of the correct type.
Usage
ensure_factor(data, execute = FALSE, threshold_factor = 5)
Arguments
data |
A data frame. |
execute |
Bool, default |
threshold_factor |
An integer, default |
Value
A list containing data frame and description.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##
ensure_factor(pbc)
ensure_factor(pbc,execute=TRUE)[['message']]
pbc_exe <- ensure_factor(pbc,execute=TRUE)[['data']]
Smooth Curve
Description
Draw smooth curves. The four regression methods include general linear regression, logistic regression, conditional logistic regression and cox proportional hazards regression.
Usage
smooth_curve(
x,
y,
data,
y_time = NULL,
strata = NULL,
adj = c(),
fx = FALSE,
k = c(),
split_var = NULL,
div = c()
)
Arguments
x |
A string. The independent variable to be summarized given as a string. |
y |
A string. The dependent variable to be summarized given as a string. |
data |
A data frame in which these variables exist. |
y_time |
A string. The survival time variable to be summarized given as a string. |
strata |
A string. The paired variable to be summarized given as a string. |
adj |
A vector of strings, default = |
fx |
Bool, default |
k |
A vector of integers, default |
split_var |
A string, default |
div |
A numeric vector, default |
Value
An object about smooth curve.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##The censored data is not discussed here
pbc_full <- subset(pbc,status!=0)
pbc_full$status <- pbc_full$status-1
## Make categorical variables factors
varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex')
pbc_full[varsToFactor] <- lapply(pbc_full[varsToFactor], factor)
## Moderator variables
adj_pbc <- c('age','alk.phos','ast')
## Smooth curve of General linear regression:
gam <- smooth_curve(x='albumin',
y='bili',
adj=adj_pbc,
data=pbc_full)
plot(gam$gam,se=TRUE,rug=TRUE,shift=gam$shift)
## Smooth curve of logistic regression:
gam <- smooth_curve(x = 'albumin',
y = 'status',
adj = adj_pbc,
split_var ='age',
div = c(45),
data = pbc_full)
plot(gam$gam[[1]],se=FALSE,rug=TRUE,xlim=c(2,4.5),ylab = 'Adjusted ln ORs for death')
oldpar <- par(new=TRUE)
plot(gam$gam[[2]],se=FALSE,rug=TRUE,xlim=c(2,4.5),ylab = 'Adjusted ln ORs for death',lty=2)
on.exit(par(oldpar))
## Smooth curve of conditional logistic regression:
pbc_full <- data.frame(pbc_full,'ytime'=1)
gam <- smooth_curve(x ='albumin',
y_time = 'ytime',
y = 'status',
adj = adj_pbc,
strata = 'trt',
data = pbc_full)
termplot(gam,term =c(1),col.term ="black",col.se = "black",se=TRUE,rug=FALSE,
ylab="Log ORs for death")
## Smooth curve of Cox proportional hazards regression:
gam <- smooth_curve(x ='albumin',
y_time = 'time',
y = 'status',
adj = adj_pbc,
data = pbc_full)
termplot(gam,term =c(1),col.term ="black",col.se = "black",se=TRUE,rug=FALSE)
Table 1
Description
Create an object summarizing all baseline variables ( both continuous and categorical ). The function is improved on the basis of tableone::CreateTableOne to become more convenient to use.
Usage
table1(
var,
strata,
data,
normal = c("age", "bmi", "sbp", "dbp"),
catDigits = 1,
contDigits = 1,
pDigits = 3,
showAllLevels = FALSE
)
Arguments
var |
A vector of strings. Variables to be summarized given as a character vector. |
strata |
A vector of strings. Stratifying (grouping) variable name(s) given as a character vector. |
data |
A data frame in which these variables exist. |
normal |
A vector of strings, default |
catDigits |
An integer, Number of decimal places in the table of continuous variables. |
contDigits |
An integer, Number of decimal places in the table of categorical variables. |
pDigits |
An integer, Number of decimal places in the table of p values. |
showAllLevels |
Bool, default |
Value
An object describing baseline characteristics.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
## Make categorical variables factors
varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex')
pbc[varsToFactor] <- lapply(pbc[varsToFactor], factor)
##Table 1
table1(var=c('age','albumin','alk.phos','ast','edema','ascites','bili','chol'),strata='trt',pbc)
Table 2
Description
' Table 2 ' was created through regression analysis to research influence factor. The four regression methods include general linear regression, logistic regression, conditional logistic regression and cox proportional hazards regression.
Usage
table2(
x,
y,
data,
y_time = NULL,
strata = NULL,
adj = c(),
div = list(),
div_num = list(),
ref = c(),
ref_num = c(),
continuous = FALSE,
case = 2,
method = "general",
outformat = 2
)
Arguments
x |
A string. The independent variable to be summarized given as a string. |
y |
A string. The dependent variable to be summarized given as a string. |
data |
A data frame in which these variables exist. |
y_time |
A string. The survival time variable to be summarized given as a string. It only works when |
strata |
A string. The paired variable to be summarized given as a string. It only works when |
adj |
A vector of strings, default = |
div |
A list containing Positive int greater than 1 or integer vector, If a positive integer greater than 1, it is the number of factor levels when x is split by quantile statistics. If a vector of integers, it is the strategy of grouping x by quantile statistics and then merging groups. |
div_num |
A list containing numeric vectors, Elements in the list are custom values, and x can be split into at least two levels by elements in the list. |
ref |
A vector of integers. The control level of factor levels when x is split by quantile statistics. |
ref_num |
A vector of integers. The control level of factor levels when x is split by custom values. |
continuous |
Bool, default |
case |
A vector of integers, default |
method |
( |
outformat |
|
Value
An object researching influence factor.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##The censored data is not discussed here
pbc_full <- subset(pbc,status!=0)
pbc_full$status <- pbc_full$status-1
## Make categorical variables factors
varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex')
pbc_full[varsToFactor] <- lapply(pbc_full[varsToFactor], factor)
## Moderator variables
adj_pbc <- c('age','alk.phos','ast')
## General linear regression:
table2(x = 'albumin', y = 'bili',
adj = c(), data = pbc_full,
div = list(5,c(2,3)), div_num = list(c(3.2,4)),
ref = c(2,1), ref_num = c(2),
outformat = 2)
## Logistic regression:
table2(x ='albumin', y = 'status',
adj = adj_pbc, data = pbc_full,
div = list(5,c(2,3)),
method ='logistic')
## Conditional logistic regression:
table2(x = 'albumin', y = 'status', strata = 'trt',
adj = adj_pbc, data = pbc_full,
div = list(5,c(2,3)),
method = 'con_logistic')
## Cox proportional hazards regression:
table2(x = 'albumin', y = 'status', y_time = 'time',
adj = adj_pbc, data = pbc_full,
div = list(5,c(2,3)),
method = 'cox')
Table 3
Description
Creates 'Table 3' which is about stratified analysis. The three regression methods include general linear regression, logistic regression and cox proportional hazards regression.
Usage
table3(
x,
y,
data,
split_var,
y_time = NULL,
adj = c(),
split_div = list(),
outformat = 4,
method = "general"
)
Arguments
x |
A string. The independent variable to be summarized given as a string. |
y |
A string. The dependent variable to be summarized given as a string. |
data |
A data frame in which these variables exist. |
split_var |
A vector of strings. Strata variables to be summarized given as a character vector. |
y_time |
A string. The survival time variable to be summarized given as a string. It only works when |
adj |
A vector of strings, default = |
split_div |
A list containing numeric vectors or a vector of integers that are summarized given as a string, default |
outformat |
|
method |
( |
Value
An object about stratified analysis.
Examples
## Load Mayo Clinic Primary Biliary Cirrhosis Data
library(survival)
library(tableeasy)
data(pbc)
## Check variables
head(pbc)
##The censored data is not discussed here
pbc_full <- subset(pbc,status!=0)
pbc_full$status <- pbc_full$status-1
## Make categorical variables factors
varsToFactor <- c('status','trt','ascites','hepato','spiders','edema','stage','sex')
pbc_full[varsToFactor] <- lapply(pbc_full[varsToFactor], factor)
## Moderator variables
adj_pbc <- c('age','alk.phos','ast')
## Converts the continuous variables named 'albumin' to a categorical variable named 'albumin_2'.
albumin_2 <- div_quantile('albumin',div = c(2),pbc_full)
pbc_full <- data.frame(pbc_full,'albumin_2' = albumin_2)
## General linear regression:
table3(x = 'albumin_2', y = 'bili',
adj = c(), data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(),
outformat = 1)
## Logistic regression:
table3(x = 'albumin_2', y = 'status',
adj = adj_pbc, data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(c('2','3'),c('3')),
outformat = 2,method = 'logistic')
## Cox proportional hazards regression:
table3(x = 'albumin_2',y = 'status',y_time = 'time',
adj = adj_pbc,data = pbc_full,
split_var = c('age','alk.phos','ast','trt'), split_div = list(c(45),c(1500,1700),c(),c()),
outformat = 3,method = 'cox')