Title: | Comparing Multiple Survival Functions with Crossing Hazards |
Version: | 2.0.1 |
Description: | Computing the one-sided/two-sided integrated/maximally selected EL statistics for simultaneous testing, the one-sided/two-sided EL tests for pointwise testing, and an initial test that precedes one-sided testing to exclude the possibility of crossings or alternative orderings among the survival functions. |
Depends: | R (≥ 3.5.0) |
Imports: | Iso, nloptr, methods, plyr, survival, stats |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/news11/survELtest |
LazyData: | true |
Encoding: | UTF-8 |
Author: | Hsin-wen Chang [aut, cre] <hwchang@stat.sinica.edu.tw> |
Maintainer: | Guo-You Lan <jj6020770416jj@gmail.com> |
Archs: | i386, x64 |
RoxygenNote: | 7.0.1 |
NeedsCompilation: | no |
Packaged: | 2020-01-13 14:56:01 UTC; Wally |
Repository: | CRAN |
Date/Publication: | 2020-01-13 19:20:02 UTC |
Simulated survival data with crossing hazard functions from the piecewise exponential distribution
Description
The data frame hazardcross
is obtained as follows. The survival time is generated
from the piecewise exponential model displayed in the left column of Figure 1 in Chang and McKeague (2016).
The censoring distributions (the same in each arm) is specified to
be uniform with administrative censoring at t = 10
, and a censoring rate of 25\%
in the first group.
Usage
hazardcross
Format
The hazardcross
is a data frame with 100 observations of 3 variables,
and has the following columns:
-
time
the observed times to first remission and censoring times -
censor
the censoring indicator -
group
the grouping variable
References
H. Chang, I.W. McKeague, "Empirical likelihood based tests for stochastic ordering under right censorship," Electronic Journal of Statistics, Vol. 10, No. 2, pp. 2511-2536, (2016).
See Also
nocrossings
, ptwiseELtest
, supELtest
Simulated survival data with crossing hazard functions from the Weibull distribution
Description
The data frame hazardcross_Weibull
is obtained as follows. The survival time
is generated from the Weibull model displayed as the solid and dashed lines
in the right panel of Figure 1 in Chang and McKeague (2019). The censoring distributions
(the same in each arm) is specified to be uniform with administrative censoring at t = 10
,
and a censoring rate of 25\%
in the first group.
Usage
hazardcross_Weibull
Format
The hazardcross_Weibull
is a data frame with 100 observations of 3 variables,
and has the following columns:
-
time
the observed times to first remission and censoring times -
censor
the censoring indicator -
group
the grouping variable
References
H. Chang, I.W. McKeague, "Nonparametric testing for multiple survival functions with non-inferiority margins," Annals of Statistics, Vol. 47, No. 1, pp. 205-232, (2019).
See Also
nocrossings
, ptwiseELtest
, supELtest
Severe alcoholic hepatitis data
Description
The data frame hepatitis
is obtained by digitizing the published
Kaplan-Meier curves in Nguyen-Khac et al. (2011). The method of digitizing is described in
Guyot et al. (2012).
See intELtest
for the application.
Usage
hepatitis
Format
The hepatitis
is a data frame with 174 observations of 3 variables,
and has the following columns:
-
time
the observed survival and censoring times -
censor
the censoring indicator -
group
the grouping variable
Source
Nguyen-Khac et al., "Glucocorticoids plus N-Acetylcysteine in Severe Alcoholic Hepatitis," The New England Journal of Medicine, Vol. 365, No. 19, pp. 1781-1789 (2011). http://www.nejm.org/doi/full/10.1056/NEJMoa1101214#t=article
References
P. Guyot, A. E. Ades, M. J. N. M. Ouwens, and N. J. Welton, "Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves," BMC Medical Research Methodology, 12(1):9. http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-9
Nguyen-Khac et al., "Glucocorticoids plus N-Acetylcysteine in Severe Alcoholic Hepatitis," The New England Journal of Medicine, Vol. 365, No. 19, pp. 1781-1789 (2011). http://www.nejm.org/doi/full/10.1056/NEJMoa1101214#t=article
P. Guyot, A. E. Ades, M. J. N. M. Ouwens, and N. J. Welton, "Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves," BMC Medical Research Methodology, 12(1):9. http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-9
See Also
intELtest
, supELtest
, ptwiseELtest
, nocrossings
The integrated EL test
Description
intELtest
gives a class of integrated EL statistics:
\sum_{i=1}^{m}w_i\cdot \{-2\log R(t_i)\},
where R(t)
is the EL ratio that compares the survival functions at each given time t
,
w_i
is the weight at each t_i
, and 0<t_1<\ldots<t_m<\infty
are the (ordered)
observed uncensored times at which the Kaplan–Meier estimate is positive and less than 1
for
each sample.
Usage
intELtest(
formula,
data = NULL,
group_order = NULL,
t1 = 0,
t2 = Inf,
sided = 2,
nboot = 1000,
wt = "p.event",
alpha = 0.05,
seed = 1011,
nlimit = 200
)
Arguments
formula |
a formula object with a |
data |
an optional data frame containing the variables in the |
group_order |
a |
t1 |
the first endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted.
The default value is |
t2 |
the second endpoint of a prespecified time interval, if any, to which the comparison of the survival
functions is restricted. The default value is |
sided |
|
nboot |
the number of bootstrap replications in calculating critical values for the tests.
The default value is |
wt |
the name of the weight for the integrated EL statistics:
|
alpha |
the pre-specified significance level of the tests. The default value is |
seed |
the seed for the random number generator in |
nlimit |
a number used to calculate |
Details
There are three options for the weight w_i
:
(
wt = "p.event"
)
This default option is an objective weight,w_i=\frac{d_i}{n},
which assigns weight proportional to the number of events
d_i
at each observed uncensored timet_i
. Heren
is the total sample size.(
wt = "dF"
)
Inspired by the integral-type statistics considered in Barmi and McKeague (2013), another weigth function isw_i= \hat{F}(t_i)-\hat{F}(t_{i-1}),
for
i=1,\ldots,m
, where\hat{F}(t)=1-\hat{S}(t)
,\hat{S}(t)
is the pooled KM estimator, andt_0 \equiv 0
. This reduces to the objective weight when there is no censoring. The resultingI_n
can be seen as an empirical version of the expected negative two times log EL ratio underH_0
.(
wt = "dt"
)
Inspired by the integral-type statistics considered in Pepe and Fleming (1989), another weight function isw_i= t_{i+1}-t_i,
for
i=1,\ldots,m
, wheret_{m+1} \equiv t_{m}
. This gives more weight to the time intervals where there are fewer observed uncensored times, but can be affected by extreme observations.
Value
intELtest
returns a intELtest
object, a list with 15 elements:
-
call
the function call -
teststat
the resulting integrated EL statistics -
critval
the critical value based on bootstrap -
pvalue
the p-value of the test -
formula
the value of the input argument of intELtest -
data
the value of the input argument of intELtest -
group_order
the value of the input argument of intELtest -
t1
the value of the input argument of intELtest -
t2
the value of the input argument of intELtest -
sided
the value of the input argument of intELtest -
nboot
the value of the input argument of intELtest -
wt
the value of the input argument of intELtest -
alpha
the value of the input argument of intELtest -
seed
the value of the input argument of intELtest -
nlimit
the value of the input argument of intELtest
Methods defined for intELtest
objects are provided for print
and summary
.
References
H. Chang, I.W. McKeague, "Nonparametric testing for multiple survival functions with non-inferiority margins," Annals of Statistics, Vol. 47, No. 1, pp. 205-232, (2019).
M. S. Pepe and T. R. Fleming, "Weighted Kaplan-Meier Statistics: A Class of Distance Tests for Censored Survival Data," Biometrics, Vol. 45, No. 2, pp. 497-507 (1989). https://www.jstor.org/stable/2531492?seq=1#page_scan_tab_contents
H. E. Barmi and I.W. McKeague, "Empirical likelihood-based tests for stochastic ordering," Bernoulli, Vol. 19, No. 1, pp. 295-307 (2013). https://projecteuclid.org/euclid.bj/1358531751
See Also
hepatitis
, supELtest
, ptwiseELtest
, nocrossings
, print.intELtest
, summary.intELtest
Examples
library(survELtest)
intELtest(survival::Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)
## OUTPUT:
## Call:
## intELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group)
##
## Two-sided integrated EL test statistic = 1.42, p = 0.007
The test that excludes the possibility of crossings or alternative orderings among the survival functions
Description
The test nocrossings
should be used before one-sided testing via intELtest
or supELtest
to exclude the possibility of crossings or alternative orderings among the survival functions.
Usage
nocrossings(
formula,
data = NULL,
group_order = NULL,
t1 = 0,
t2 = Inf,
sided = 2,
nboot = 1000,
alpha = 0.05,
seed = 1011,
nlimit = 200
)
Arguments
formula |
a formula object with a |
data |
an optional data frame containing the variables in the |
group_order |
a |
t1 |
the first endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted.
The default value is |
t2 |
the second endpoint of a prespecified time interval, if any, to which the comparison of the survival
functions is restricted. The default value is |
sided |
|
nboot |
the number of bootstrap replications in calculating critical values for the tests.
The default value is |
alpha |
the pre-specified significance level of the tests. The default value is |
seed |
the seed for the random number generator in |
nlimit |
a number used to calculate |
Value
nocrossings
returns a nocrossings
object, a list with 12 elements:
-
call
the function call -
decision
1
for rejection of the null hypothesis that there are crossings or alternative orderings among the survival functions, and0
otherwise -
formula
the value of the input argument of nocrossings -
data
the value of the input argument of nocrossings -
group_order
the value of the input argument of nocrossings -
t1
the value of the input argument of nocrossings -
t2
the value of the input argument of nocrossings -
sided
the value of the input argument of nocrossings -
nboot
the value of the input argument of nocrossings -
alpha
the value of the input argument of nocrossings -
seed
the value of the input argument of nocrossings -
nlimit
the value of the input argument of nocrossings
Methods defined for nocrossings
objects are provided for print
and summary
.
References
H. Chang, I.W. McKeague, "Empirical likelihood based tests for stochastic ordering under right censorship," Electronic Journal of Statistics, Vol. 10, No. 2, pp. 2511-2536 (2016).
H. Chang, I.W. McKeague, "Nonparametric testing for multiple survival functions with non-inferiority margins," Annals of Statistics, Vol. 47, No. 1, pp. 205-232, (2019).
See Also
hepatitis
, intELtest
, supELtest
, ptwiseELtest
, print.nocrossings
, summary.nocrossings
Examples
library(survELtest)
nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
Print an intELtest object
Description
Print the integrated EL statistics and the p-value of the test.
Usage
## S3 method for class 'intELtest'
print(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
x |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
See Also
hepatitis
, intELtest
, summary.intELtest
Examples
library(survELtest)
result = intELtest(survival::Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)
print(result)
## OUTPUT:
## Call:
## intELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group)
##
## Two-sided integrated EL test statistic = 1.42, p = 0.007
Print a nocrossings object
Description
Returns the decision for rejection of the null hypothesis that there are crossings or alternative orderings among the survival functions.
Usage
## S3 method for class 'nocrossings'
print(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
x |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
See Also
hepatitis
, nocrossings
, summary.nocrossings
Examples
library(survELtest)
result = nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
print(result)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
Print a ptwiseELtest object
Description
Print some summary statistics for the observed uncensored time points, and the decisions, statistics, and critical values of the pointwise EL tests at those time points.
Usage
## S3 method for class 'ptwiseELtest'
print(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
x |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
See Also
hepatitis
, ptwiseELtest
, summary.ptwiseELtest
Examples
library(survELtest)
result = ptwiseELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
print(result)
## OUTPUT:
## Call:
## ptwiseELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Range of time_pts is from 5.2 to 153.1
## 30 out of 45 decisions are 1, the other 15 decisions are 0
## -----
## Summary of stat_ptwise:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.293 3.694 4.263 6.288 10.360
## -----
## Summary of critval_ptwise:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.117 2.346 2.483 2.509 2.669 2.951
Print a supELtest object
Description
Print the maximally selected EL statistics and the p-value of the test.
Usage
## S3 method for class 'supELtest'
print(x, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
x |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
See Also
hepatitis
, supELtest
, summary.supELtest
Examples
library(survELtest)
nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
## A decision value of 1 means the case of crossings or alternative orderings among the
## survival functions is excluded. Thus, we can proceed to the one-sided test.
result = supELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
print(result)
## OUTPUT:
## Call:
## supELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## One-sided maximally selected EL test statistic = 10.36, p = 0.006
The pointwise EL testing
Description
ptwiseELtest
gives pointwise EL testing to compare the survival curves at
each time point.
Usage
ptwiseELtest(
formula,
data = NULL,
group_order = NULL,
t1 = 0,
t2 = Inf,
sided = 2,
nboot = 1000,
alpha = 0.05,
seed = 1011,
nlimit = 200
)
Arguments
formula |
a formula object with a |
data |
an optional data frame containing the variables in the |
group_order |
a |
t1 |
the first endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted.
The default value is |
t2 |
the second endpoint of a prespecified time interval, if any, to which the comparison of the survival
functions is restricted. The default value is |
sided |
|
nboot |
the number of bootstrap replications in calculating critical values for the tests.
The default value is |
alpha |
the pre-specified significance level of the tests. The default value is |
seed |
the seed for the random number generator in |
nlimit |
a number used to calculate |
Value
ptwiseELtest
returns a ptwiseELtest
object, a list with 12 elements:
-
call
the function call -
result_dataframe
a dataframe withtime_pts
in the first column,decision
in the second column,stat_ptwise
in the third column andcritval_ptwise
in the fourth column.-
time_pts
a vector containing the observed uncensored time points at which the Kaplan—Meier estimate is positive and less than1
for each sample. -
decision
a vector containing the decisions of the pointwise EL tests attime_pts
. The decision at each oftime_pts
is1
for rejection of the null hypothesis that the survival functions are the same at the specific time point, and0
otherwise. -
stat_ptwise
a vector containing the pointwise EL statistics attime_pts
. -
critval_ptwise
a vector containing the critical values for pointwise EL testing attime_pts
.
-
-
formula
the value of the input argument of ptwiseELtest -
data
the value of the input argument of ptwiseELtest -
group_order
the value of the input argument of ptwiseELtest -
t1
the value of the input argument of ptwiseELtest -
t2
the value of the input argument of ptwiseELtest -
sided
the value of the input argument of ptwiseELtest -
nboot
the value of the input argument of ptwiseELtest -
alpha
the value of the input argument of ptwiseELtest -
seed
the value of the input argument of ptwiseELtest -
nlimit
the value of the input argument of ptwiseELtest
Methods defined for ptwiseELtest
objects are provided for print
and summary
.
See Also
hepatitis
, intELtest
, supELtest
, nocrossings
, print.ptwiseELtest
, summary.ptwiseELtest
Examples
library(survELtest)
ptwiseELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## ptwiseELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Range of time_pts is from 5.2 to 153.1
## 30 out of 45 decisions are 1, the other 15 decisions are 0
## -----
## Summary of stat_ptwise:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 2.293 3.694 4.263 6.288 10.360
## -----
## Summary of critval_ptwise:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.117 2.346 2.483 2.509 2.669 2.951
Summary function for intELtest object
Description
Returns a list containing the integrated EL statistics, the critical value based on bootstrap, and the p-value of the test.
Usage
## S3 method for class 'intELtest'
summary(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
object |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
Value
summary.intELtest
returns a list with following components:
-
call
the statement used to create theintELtest
object -
teststat
the resulting integrated EL statistics -
critval
the critical value based on bootstrap -
pvalue
the p-value of the test -
sided
the value of the input argument of intELtest -
alpha
the value of the input argument of intELtest
See Also
hepatitis
, intELtest
, print.intELtest
Examples
library(survELtest)
result = intELtest(survival::Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)
summary(result)
## OUTPUT:
## Call:
## intELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group)
##
## Two-sided integrated EL test statistic = 1.42, p = 0.007,
## critical value based on bootstrap = 0.875 at a significance level of 0.05
Summary function for nocrossings object
Description
Returns the decision for rejection of the null hypothesis that there are crossings or alternative orderings among the survival functions.
Usage
## S3 method for class 'nocrossings'
summary(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
object |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
Value
summary.nocrossings
returns a list with following components:
-
call
the statement used to create thenocrossings
object -
decision
1
for rejection of the null hypothesis that there are crossings or alternative orderings among the survival functions, and0
otherwise
See Also
hepatitis
, nocrossings
, print.nocrossings
Examples
library(survELtest)
result = nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
summary(result)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
Summary function for ptwiseELtest object
Description
Returns a list with a data frame containing the observed uncensored time points, and the decisions, statistics, and critical values of the pointwise EL tests at those time points.
Usage
## S3 method for class 'ptwiseELtest'
summary(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
object |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
Value
summary.ptwiseELtest
returns a list with following components:
-
call
the statement used to create theptwiseELtest
object -
result_dataframe
a dataframe withtime_pts
in the first column,decision
in the second column,stat_ptwise
in the third column andcritval_ptwise
in the fourth column.-
time_pts
a vector containing the observed uncensored time points at which the Kaplan—Meier estimate is positive and less than1
for each sample. -
decision
a vector containing the decisions of the pointwise EL tests attime_pts
. The decision at each oftime_pts
is1
for rejection of the null hypothesis that the survival functions are the same at the specific time point, and0
otherwise. -
stat_ptwise
a vector containing the pointwise EL statistics attime_pts
. -
critval_ptwise
a vector containing the critical values for pointwise EL testing attime_pts
.
-
See Also
hepatitis
, ptwiseELtest
, print.ptwiseELtest
Examples
library(survELtest)
result = ptwiseELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
summary(result)
## OUTPUT:
## Call:
## ptwiseELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## time_pts decision stat_ptwise critval_ptwise
## 1 5.2 0 0.3005 2.951
## 2 9.7 0 0.0000 2.833
## 3 12.9 0 0.1627 2.748
## 4 14.0 0 0.6114 2.583
## 5 14.9 0 2.0010 2.780
## 6 15.7 1 3.7873 2.764
## 7 18.0 1 3.0722 2.652
## 8 18.9 0 1.8878 2.454
## 9 19.2 1 2.5896 2.339
## 10 19.7 0 1.6133 2.601
## 11 20.0 0 2.2393 2.383
## 12 21.7 1 3.6936 2.192
## 13 24.0 1 4.5083 2.300
## 14 24.9 1 5.3743 2.391
## 15 26.0 1 6.2879 2.253
## 16 26.9 1 9.2827 2.117
## 17 27.8 1 10.3581 2.209
## 18 28.0 1 6.9862 2.317
## 19 30.0 1 7.9190 2.346
## 20 31.2 1 6.5074 2.318
## 21 32.1 1 4.9709 2.310
## 22 34.1 1 5.7455 2.360
## 23 36.1 1 6.5627 2.244
## 24 44.9 1 5.4374 2.363
## 25 45.2 1 6.2240 2.416
## 26 47.8 1 7.0519 2.409
## 27 54.1 1 7.9198 2.427
## 28 54.9 1 6.7260 2.310
## 29 58.1 1 7.5667 2.456
## 30 59.8 1 7.2524 2.483
## 31 63.2 1 6.1770 2.511
## 32 70.4 1 5.2110 2.562
## 33 76.1 1 4.3461 2.683
## 34 80.1 1 3.5753 2.744
## 35 81.3 1 2.8926 2.467
## 36 82.1 0 2.2925 2.669
## 37 90.1 1 2.7908 2.543
## 38 92.1 0 2.2120 2.523
## 39 95.0 0 1.7079 2.755
## 40 99.0 0 2.1383 2.762
## 41 108.2 0 2.6206 2.652
## 42 109.9 1 3.1475 2.630
## 43 117.0 0 2.5398 2.646
## 44 148.8 1 3.0555 2.685
## 45 153.1 0 2.4658 2.774
Summary function for supELtest object
Description
Returns a list containing the maximally selected EL statistics, the critical value based on bootstrap, and the p-value of the test.
Usage
## S3 method for class 'supELtest'
summary(object, digits = max(3L, getOption("digits") - 3L), quiet = FALSE, ...)
Arguments
object |
the result of a call to the |
digits |
significant digits to print, the default value is |
quiet |
a logical indicating whether to reduce the amount of output or not, the default value is |
... |
for future method |
Value
summary.supELtest
returns a list with following components:
-
call
the statement used to create thesupELtest
object -
teststat
the resulting integrated EL statistics -
critval
the critical value based on bootstrap -
pvalue
the p-value of the test -
sided
the value of the input argument of supELtest -
alpha
the value of the input argument of supELtest
See Also
hepatitis
, supELtest
, print.supELtest
Examples
library(survELtest)
nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
## A decision value of 1 means the case of crossings or alternative orderings among the
## survival functions is excluded. Thus, we can proceed to the one-sided test.
result = supELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
summary(result)
## OUTPUT:
## Call:
## supELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## One-sided maximally selected EL test statistic = 10.36, p = 0.006,
## critical value based on bootstrap = 6.289 at a significance level of 0.05
The maximally selected EL test
Description
supELtest
provides the maximally selected EL statistics that
is better adapted at detecting local differences:
\sup_{i=1,\ldots,m}\{-2\log R(t_i)\},
where R(t)
is the EL ratio that compares the survival functions at each given time t
,
and 0<t_1<\ldots<t_m<\infty
are the (ordered) observed uncensored times at which the
Kaplan–Meier estimate is positive and less than 1 for each sample.
Usage
supELtest(
formula,
data = NULL,
group_order = NULL,
t1 = 0,
t2 = Inf,
sided = 2,
nboot = 1000,
alpha = 0.05,
seed = 1011,
nlimit = 200
)
Arguments
formula |
a formula object with a |
data |
an optional data frame containing the variables in the |
group_order |
a |
t1 |
the first endpoint of a prespecified time interval, if any, to which the comparison of the survival functions is restricted.
The default value is |
t2 |
the second endpoint of a prespecified time interval, if any, to which the comparison of the survival
functions is restricted. The default value is |
sided |
|
nboot |
the number of bootstrap replications in calculating critical values for the tests.
The default value is |
alpha |
the pre-specified significance level of the tests. The default value is |
seed |
the seed for the random number generator in |
nlimit |
a number used to calculate |
Value
supELtest
returns a supELtest
object, a list with 14 elements:
-
call
the function call -
teststat
the resulting integrated EL statistics -
critval
the critical value based on bootstrap -
pvalue
the p-value of the test -
formula
the value of the input argument of supELtest -
data
the value of the input argument of supELtest -
group_order
the value of the input argument of supELtest -
t1
the value of the input argument of supELtest -
t2
the value of the input argument of supELtest -
sided
the value of the input argument of supELtest -
nboot
the value of the input argument of supELtest -
alpha
the value of the input argument of supELtest -
seed
the value of the input argument of supELtest -
nlimit
the value of the input argument of supELtest
Methods defined for supELtest
objects are provided for print
and summary
.
References
H. Chang, I.W. McKeague, "Empirical likelihood based tests for stochastic ordering under right censorship," Electronic Journal of Statistics, Vol. 10, No. 2, pp. 2511-2536 (2016).
H. Chang, I.W. McKeague, "Nonparametric testing for multiple survival functions with non-inferiority margins," Annals of Statistics, Vol. 47, No. 1, pp. 205-232, (2019).
See Also
hepatitis
, intELtest
, ptwiseELtest
, nocrossings
, print.supELtest
, summary.supELtest
Examples
library(survELtest)
nocrossings(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## nocrossings(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## Decision = 1
## A decision value of 1 means the case of crossings or alternative orderings among the
## survival functions is excluded. Thus, we can proceed to the one-sided test.
supELtest(survival::Surv(hepatitis$time, hepatitis$censor)~
hepatitis$group, sided = 1)
## OUTPUT:
## Call:
## supELtest(formula = survival::Surv(hepatitis$time, hepatitis$censor) ~
## hepatitis$group, sided = 1)
##
## One-sided maximally selected EL test statistic = 10.36, p = 0.006
Time to first remission data
Description
The data frame threearm
is obtained by resampling from perturbed time-to-remission
from patients in a three-arm randomized clinical trial for the treatment of major depression.
See nocrossings
, ptwiseELtest
and supELtest
for the application.
Usage
threearm
Format
The threearm
is a data frame with 664 observations of 3 variables,
and has the following columns:
-
time
the observed times to first remission and censoring times -
censor
the censoring indicator -
group
the grouping variable