Type: | Package |
Title: | S-LASSO Estimator for the Function-on-Function Linear Regression |
Version: | 1.0.0 |
Description: | Implements the smooth LASSO estimator for the function-on-function linear regression model described in Centofanti et al. (2020) <doi:10.48550/arXiv.2007.00529>. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.2 |
LinkingTo: | Rcpp, RcppArmadillo |
Depends: | inline |
Imports: | Rcpp, RcppArmadillo, fda, fda.usc, matrixcalc, parallel, matrixStats, MASS, plot3D, methods, cxxfunplus |
URL: | https://github.com/unina-sfere/slasso |
BugReports: | https://github.com/unina-sfere/slasso |
SystemRequirements: | GNU make |
Suggests: | knitr, rmarkdown, testthat |
NeedsCompilation: | yes |
Packaged: | 2021-10-14 12:23:55 UTC; fabio |
Author: | Fabio Centofanti [cre, aut], Antonio Lepore [aut], Simone Vantini [aut], Matteo Fontana [aut] |
Maintainer: | Fabio Centofanti <fabio.centofanti@unina.it> |
Repository: | CRAN |
Date/Publication: | 2021-10-15 07:40:02 UTC |
Smooth LASSO Estimator for the Function-on-Function Linear Regression Model
Description
Implements the Smooth LASSO Estimator for the Function-on-Function Linear Regression Model described in Centofanti et al. (2020) <arXiv:2007.00529>.
Details
Package: | slasso |
Type: | Package |
Version: | 1.0.0 |
Date: | 2021-10-13 |
License: | GPL (>= 3) |
Author(s)
Fabio Centofanti, Matteo Fontana, Antonio Lepore, Simone Vantini
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso_cv<-slasso.fr_cv(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L_vec = 10^seq(0,1,by=1),lambda_s_vec = 10^-9,lambda_t_vec = 10^-7,
B0=NULL,max_iterations=10,K=2,invisible=1,ncores=1)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = 10^0.7,lambda_s =10^-5,lambda_t = 10^-6,B0 =NULL,invisible=1,max_iterations=10)
plot(mod_slasso_cv)
plot(mod_slasso)
Plot the results of the S-LASSO method
Description
This function provides plots of the S-LASSO coefficient function estimate when applied to the output of slasso.fr
, whereas
provides the cross-validation plots when applied to the output of slasso.fr_cv
. In the latter case the first plot displays the CV values as a function of lambda_L
, lambda_s
and lambda_t
, and
the second plot displays the CV values as a function of lambda_L
with lambda_s
and lambda_t
fixed at their optimal values.
Usage
## S3 method for class 'slasso_cv'
plot(x, ...)
## S3 method for class 'slasso'
plot(x, ...)
Arguments
x |
The output of either |
... |
No additional parameters, called for side effects. |
Value
No return value, called for side effects.
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = -1.5,lambda_s =-8,lambda_t = -7,B0 =NULL,invisible=1,max_iterations=10)
plot(mod_slasso)
Simulate data through the function-on-function linear regression model
Description
Generate synthetic data as in the simulation study of Centofanti et al. (2020).
Usage
simulate_data(scenario, n_obs = 3000, type_x = "Bspline")
Arguments
scenario |
A character strings indicating the scenario considered. It could be "Scenario I", "Scenario II", "Scenario III", and "Scenario IV". |
n_obs |
Number of observations. |
type_x |
Covariate generating mechanism, either Bspline or Brownian. |
Value
A list containing the following arguments:
X
: Covariate matrix, where the rows correspond to argument values and columns to replications.
Y
: Response matrix, where the rows correspond to argument values and columns to replications.
X_fd
: Coavariate functions.
Y_fd
: Response functions.
clus
: True cluster membership vector.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
Smooth LASSO estimator for the function-on-function linear regression model
Description
The smooth LASSO (S-LASSO) method for the function-on-function linear regression model provides interpretable coefficient function estimates that are both locally sparse and smooth (Centofanti et al., 2020).
Usage
slasso.fr(
Y_fd,
X_fd,
basis_s,
basis_t,
lambda_L,
lambda_s,
lambda_t,
B0 = NULL,
...
)
Arguments
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
lambda_L |
Regularization parameter of the functional LASSO penalty. |
lambda_s |
Regularization parameter of the smoothness penalty along the |
lambda_t |
Regularization parameter of the smoothness penalty along the |
B0 |
Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of |
... |
Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the |
Value
A list containing the following arguments:
-
B
: The basis coefficients matrix estimate of the coefficient function. -
Beta_hat_fd
: The coefficient function estimate of class bifd. -
alpha
: The intercept function estimate. -
lambdas_L
: Regularization parameter of the functional LASSO penalty. -
lambda_s
: Regularization parameter of the smoothness penalty along thes
-direction. -
lambda_t
: Regularization parameter of the smoothness penalty along thet
-direction. -
Y_fd
: The response functions. -
X_fd
: The covariate functions. -
per_0
: The fraction of domain where the coefficient function is zero. -
type
: The output type.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-30
n_basis_t<-30
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso<-slasso.fr(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L = -1.5,lambda_s =-8,lambda_t = -7,B0 =NULL,invisible=1,max_iterations=10)
Cross-validation for the S-LASSO estimator
Description
K-fold cross-validation procedure to choose the tuning parameters for the S-LASSO estimator (Centofanti et al., 2020).
Usage
slasso.fr_cv(
Y_fd,
X_fd,
basis_s,
basis_t,
K = 10,
kss_rule_par = 0.5,
lambda_L_vec = NULL,
lambda_s_vec = NULL,
lambda_t_vec = NULL,
B0 = NULL,
ncores = 1,
...
)
Arguments
Y_fd |
An object of class fd corresponding to the response functions. |
X_fd |
An object of class fd corresponding to the covariate functions. |
basis_s |
B-splines basis along the |
basis_t |
B-splines basis along the |
K |
Number of folds. Default is 10. |
kss_rule_par |
Parameter of the |
lambda_L_vec |
Vector of regularization parameters of the functional LASSO penalty. |
lambda_s_vec |
Vector of regularization parameters of the smoothness penalty along the |
lambda_t_vec |
Vector of regularization parameters of the smoothness penalty along the |
B0 |
Initial estimator of the basis coefficients matrix of the coefficient function. Should have dimensions in accordance with the basis dimensions of |
ncores |
If |
... |
Other arguments to be passed to the Orthant-Wise Limited-memory Quasi-Newton optimization function. See the |
Value
A list containing the following arguments:
-
lambda_opt_vec
: Vector of optimal tuning parameters. -
CV
: Estimated prediction errors. -
CV_sd
: Standard errors of the estimated prediction errors. -
per_0
: The fractions of domain where the coefficient function is zero for all the tuning parameters combinations. -
comb_list
: The combinations oflambda_L
,lambda_s
andlambda_t
explored. -
Y_fd
: The response functions. -
X_fd
: The covariate functions.
References
Centofanti, F., Fontana, M., Lepore, A., & Vantini, S. (2020). Smooth LASSO Estimator for the Function-on-Function Linear Regression Model. arXiv preprint arXiv:2007.00529.
See Also
Examples
library(slasso)
data<-simulate_data("Scenario II",n_obs=150)
X_fd=data$X_fd
Y_fd=data$Y_fd
domain=c(0,1)
n_basis_s<-60
n_basis_t<-60
breaks_s<-seq(0,1,length.out = (n_basis_s-2))
breaks_t<-seq(0,1,length.out = (n_basis_t-2))
basis_s <- fda::create.bspline.basis(domain,breaks=breaks_s)
basis_t <- fda::create.bspline.basis(domain,breaks=breaks_t)
mod_slasso_cv<-slasso.fr_cv(Y_fd = Y_fd,X_fd=X_fd,basis_s=basis_s,basis_t=basis_t,
lambda_L_vec=seq(0,1,by=1),lambda_s_vec=c(-9),lambda_t_vec=-7,B0=NULL,
max_iterations=10,K=2,invisible=1,ncores=1)