Type: | Package |
Title: | Estimating Infection Rates from Serological Data |
Version: | 1.3.0 |
Description: | Translates antibody levels measured in cross-sectional population samples into estimates of the frequency with which seroconversions (infections) occur in the sampled populations. Replaces the previous 'seroincidence' package. |
License: | GPL-3 |
URL: | https://github.com/UCD-SERG/serocalculator, https://ucd-serg.github.io/serocalculator/ |
BugReports: | https://github.com/UCD-SERG/serocalculator/issues |
Depends: | R (≥ 4.1.0) |
Imports: | cli, doParallel, dplyr (≥ 1.1.1), foreach, ggplot2, ggpubr, lifecycle, magrittr, mixtools, Rcpp, rlang, rngtools, scales, stats, tibble, tidyr, tidyselect, utils, purrr, and, glue, stringr |
Suggests: | bookdown, DT, fs, ggbeeswarm, knitr, pak, parallel, readr, quarto, rmarkdown, spelling, ssdtools (≥ 1.0.6.9016), testthat (≥ 3.0.0), tidyverse, qrcode, svglite, vdiffr |
LinkingTo: | Rcpp |
Config/testthat/edition: | 3 |
Config/Needs/build: | moodymudskipper/devtag |
Encoding: | UTF-8 |
Language: | en-US |
LazyData: | true |
NeedsCompilation: | yes |
RoxygenNote: | 7.3.2 |
Packaged: | 2025-01-25 00:42:28 UTC; kwlai |
Author: | Peter Teunis [aut, cph] (Author of the method and original code.), Kristina Lai [aut, cre], Chris Orwa [aut], Kristen Aiemjoy [aut], Douglas Ezra Morrison [aut] |
Maintainer: | Kristina Lai <kwlai@ucdavis.edu> |
Repository: | CRAN |
Date/Publication: | 2025-01-25 07:10:02 UTC |
Estimating Infection Rates from Serological Data
Description
This package translates antibody levels measured in a (cross-sectional) population sample into an estimate of the frequency with which seroconversions (infections) occur in the sampled population.
Details
_PACKAGE
Author(s)
Peter Teunis p.teunis@emory.edu
Doug Ezra Morrison demorrison@ucdavis.edu
Kristen Aiemjoy kaiemjoy@ucdavis.edu
Kristina Lai kwlai@ucdavis.edu
References
Methods for estimating seroincidence
Teunis, P. F. M., and J. C. H. van Eijkeren. "Estimation of seroconversion rates for infectious diseases: Effects of age and noise." Statistics in Medicine 39, no. 21 (2020): 2799-2814.
Teunis, P. F. M., J. C. H. van Eijkeren, W. F. de Graaf, A. Bonačić Marinović, and M. E. E. Kretzschmar. "Linking the seroresponse to infection to within-host heterogeneity in antibody production." Epidemics 16 (2016): 33-39.
Applications
Aiemjoy, Kristen, Jessica C. Seidman, Senjuti Saha, Sira Jam Munira, Mohammad Saiful Islam Sajib, Syed Muktadir Al Sium, Anik Sarkar et al. "Estimating typhoid incidence from community-based serosurveys: a multicohort study." The Lancet Microbe 3, no. 8 (2022): e578-e587.
Aiemjoy, Kristen, John Rumunu, Juma John Hassen, Kirsten E. Wiens, Denise Garrett, Polina Kamenskaya, Jason B. Harris et al. "Seroincidence of enteric fever, Juba, South Sudan." Emerging infectious diseases 28, no. 11 (2022): 2316.
Monge, S., Teunis, P. F., Friesema, I., Franz, E., Ang, W., van Pelt, W., Mughini-Gras, L. "Immune response-eliciting exposure to Campylobacter vastly exceeds the incidence of clinically overt campylobacteriosis but is associated with similar risk factors: A nationwide serosurvey in the Netherlands" Journal of Infection, 2018, 1–7, doi:10.1016/j.jinf.2018.04.016
Kretzschmar, M., Teunis, P. F., Pebody, R. G. "Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries" PLoS Medicine 7, no. 6 (June 1, 2010):e1000291. doi:10.1371/journal.pmed.1000291.
Simonsen, J., Strid, M. A., Molbak, K., Krogfelt, K. A., Linneberg, A., Teunis, P. "Sero-epidemiology as a tool to study the incidence of Salmonella infections in humans" Epidemiology and Infection 136, no. 7 (July 1, 2008): 895–902. doi:10.1017/S0950268807009314
Simonsen, J., Teunis, P. F., van Pelt, W., van Duynhoven, Y., Krogfelt, K. A., Sadkowska-Todys, M., Molbak K. "Usefulness of seroconversion rates for comparing infection pressures between countries" Epidemiology and Infection, April 12, 2010, 1–8. doi:10.1017/S0950268810000750.
Falkenhorst, G., Simonsen, J., Ceper, T. H., van Pelt, W., de Valk, H., Sadkowska-Todys, M., Zota, L., Kuusi, M., Jernberg, C., Rota, M. C., van Duynhoven, Y. T., Teunis, P. F., Krogfelt, K. A., Molbak, K. "Serological cross-sectional studies on salmonella incidence in eight European countries: no correlation with incidence of reported cases" BMC Public Health 12, no. 1 (July 15, 2012): 523–23. doi:10.1186/1471-2458-12-523.
Teunis, P. F., Falkenhorst, G., Ang, C. W., Strid, M. A., De Valk, H., Sadkowska-Todys, M., Zota, L., Kuusi, M., Rota, M. C., Simonsen, J. B., Molbak, K., Van Duynhoven, Y. T., van Pelt, W. "Campylobacter seroconversion rates in selected countries in the European Union" Epidemiology and Infection 141, no. 10 (2013): 2051–57. doi:10.1017/S0950268812002774.
de Melker, H. E., Versteegh, F. G., Schellekens, J. F., Teunis, P. F., Kretzschmar, M. "The incidence of Bordetella pertussis infections estimated in the population from a combination of serological surveys" The Journal of Infection 53, no. 2 (August 1, 2006): 106–13. doi:10.1016/j.jinf.2005.10.020
Quantification of seroresponse
de Graaf, W. F., Kretzschmar, M. E., Teunis, P. F., Diekmann, O. "A two-phase within-host model for immune response and its application to serological profiles of pertussis" Epidemics 9 (2014):1–7. doi:10.1016/j.epidem.2014.08.002.
Berbers, G. A., van de Wetering, M. S., van Gageldonk, P. G., Schellekens, J. F., Versteegh, F. G., Teunis, P.F. "A novel method for evaluating natural and vaccine induced serological responses to Bordetella pertussis antigens" Vaccine 31, no. 36 (August 12, 2013): 3732–38. doi:10.1016/j.vaccine.2013.05.073.
Versteegh, F. G., Mertens, P. L., de Melker, H. E., Roord, J. J., Schellekens, J. F., Teunis, P. F. "Age-specific long-term course of IgG antibodies to pertussis toxin after symptomatic infection with Bordetella pertussis" Epidemiology and Infection 133, no. 4 (August 1, 2005): 737–48.
Teunis, P. F., van der Heijden, O. G., de Melker, H. E., Schellekens, J. F., Versteegh, F. G., Kretzschmar, M. E. "Kinetics of the IgG antibody response to pertussis toxin after infection with B. pertussis" Epidemiology and Infection 129, no. 3 (December 10, 2002):479. doi:10.1017/S0950268802007896.
Calculate negative log-likelihood
Description
Same as log_likelihood()
, except negated and requiring lambda on log scale (used in combination with nlm()
, to ensure that the optimization search doesn't stray into negative values of lambda
).
Usage
.nll(log.lambda, ...)
Arguments
log.lambda |
natural logarithm of incidence rate |
... |
Arguments passed on to
|
Value
the negative log-likelihood of the data with the current parameter values
Extract or replace parts of a seroincidence.by
object
Description
Extract or replace parts of a seroincidence.by
object
Usage
## S3 method for class 'seroincidence.by'
x[i, ...]
Arguments
x |
the object to subset/replace elements of |
i |
the indices to subset/replace |
... |
passed to |
Value
the subset specified
kinetics of the antibody (ab) response (power function decay)
Description
kinetics of the antibody (ab) response (power function decay)
Usage
ab(t, par, ...)
Arguments
t |
age at infection? |
par |
parameters |
... |
arguments passed to |
Value
a matrix()
Load antibody decay curve parameter
Description
Load antibody decay curve parameter
Usage
as_curve_params(data, antigen_isos = NULL)
Arguments
data |
|
antigen_isos |
a |
Value
a curve_data
object
(a tibble::tbl_df with extra attribute antigen_isos
)
Examples
library(magrittr)
curve_data <-
serocalculator_example("example_curve_params.csv") %>%
read.csv() %>%
as_curve_params()
print(curve_data)
Load noise parameters
Description
Load noise parameters
Usage
as_noise_params(data, antigen_isos = NULL)
Arguments
data |
|
antigen_isos |
|
Value
a noise_params
object (a tibble::tbl_df with
extra attribute antigen_isos
)
Examples
library(magrittr)
noise_data <-
serocalculator_example("example_noise_params.csv") %>%
read.csv() %>%
as_noise_params()
print(noise_data)
Load a cross-sectional antibody survey data set
Description
Load a cross-sectional antibody survey data set
Usage
as_pop_data(
data,
antigen_isos = NULL,
age = "Age",
value = "result",
id = "index_id",
standardize = TRUE
)
Arguments
data |
|
antigen_isos |
|
age |
a |
value |
a |
id |
a |
standardize |
a |
Value
a pop_data
object (a tibble::tbl_df
with extra attribute antigen_isos
)
Examples
library(magrittr)
xs_data <-
serocalculator_example("example_pop_data.csv") %>%
read.csv() %>%
as_pop_data()
print(xs_data)
graph antibody decay curves by antigen isotype
Description
graph antibody decay curves by antigen isotype
Usage
## S3 method for class 'curve_params'
autoplot(
object,
antigen_isos = unique(object$antigen_iso),
ncol = min(3, length(antigen_isos)),
...
)
Arguments
object |
a |
antigen_isos |
antigen isotypes to analyze (can subset |
ncol |
how many columns of subfigures to use in panel plot |
... |
Arguments passed on to
|
Details
rows_to_graph
Note that if you directly specify rows_to_graph
when calling this function,
the row numbers are enumerated separately for each antigen isotype;
in other words, for the purposes of this argument,
row numbers start over at 1 for each antigen isotype. There is currently
no way to specify different row numbers for different antigen isotypes;
if you want to do that, you could call plot_curve_params_one_ab()
directly for each antigen isotype and combine the resulting panels yourself.
Or you could subset curve_params
manually, before passing it to this
function, and set the n_curves
argument to Inf
.
Value
a ggplot2::ggplot()
object
Examples
library(dplyr)
library(ggplot2)
library(magrittr)
curve <-
serocalculator_example("example_curve_params.csv") %>%
read.csv() %>%
as_curve_params() %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG")) %>%
autoplot()
curve
Plot distribution of antibodies
Description
autoplot()
method for pop_data
objects
Usage
## S3 method for class 'pop_data'
autoplot(object, log = FALSE, type = "density", strata = NULL, ...)
Arguments
object |
A |
log |
whether to show antibody responses on logarithmic scale |
type |
an option to choose type of chart:
the current options are |
strata |
the name of a variable in |
... |
unused |
Value
a ggplot2::ggplot object
Examples
library(dplyr)
library(ggplot2)
library(magrittr)
xs_data <-
serocalculator_example("example_pop_data.csv") %>%
read.csv() %>%
as_pop_data()
xs_data %>% autoplot(strata = "catchment", type = "density")
xs_data %>% autoplot(strata = "catchment", type = "age-scatter")
Plot the log-likelihood curve for the incidence rate estimate
Description
Plot the log-likelihood curve for the incidence rate estimate
Usage
## S3 method for class 'seroincidence'
autoplot(object, log_x = FALSE, ...)
Arguments
object |
a |
log_x |
should the x-axis be on a logarithmic scale ( |
... |
unused |
Value
Examples
library(dplyr)
library(ggplot2)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est1 <- est.incidence(
pop_data = xs_data,
curve_param = curve,
noise_param = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
build_graph = TRUE
)
# Plot the log-likelihood curve
autoplot(est1)
Plot seroincidence.by
log-likelihoods
Description
Plots log-likelihood curves by stratum, for seroincidence.by
objects
Usage
## S3 method for class 'seroincidence.by'
autoplot(object, ncol = min(3, length(object)), ...)
Arguments
object |
a '"seroincidence.by"' object (from |
ncol |
number of columns to use for panel of plots |
... |
Arguments passed on to
|
Value
an object of class "ggarrange"
, which is a ggplot2::ggplot()
or a list()
of ggplot2::ggplot()
s.
Examples
library(dplyr)
library(ggplot2)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est2 <- est.incidence.by(
strata = c("catchment"),
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
#num_cores = 8, #Allow for parallel processing to decrease run time
build_graph = TRUE
)
# Plot the log-likelihood curve
autoplot(est2)
Plot method for summary.seroincidence.by
objects
Description
Plot method for summary.seroincidence.by
objects
Usage
## S3 method for class 'summary.seroincidence.by'
autoplot(object, xvar, alpha = 0.7, shape = 1, width = 0.001, ...)
Arguments
object |
a |
xvar |
the name of a stratifying variable in |
alpha |
transparency for the points in the graph (1 = no transparency, 0 = fully transparent) |
shape |
shape argument for |
width |
width for jitter |
... |
unused |
Value
a ggplot2::ggplot()
object
Examples
library(dplyr)
library(ggplot2)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est2 <- est.incidence.by(
strata = c("catchment"),
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
#num_cores = 8 #Allow for parallel processing to decrease run time
)
est2sum <- summary(est2)
autoplot(est2sum, "catchment")
Check the formatting of a cross-sectional antibody survey dataset.
Description
Check the formatting of a cross-sectional antibody survey dataset.
Usage
check_pop_data(pop_data, verbose = FALSE)
Arguments
pop_data |
dataset to check |
verbose |
whether to print an "OK" message when all checks pass |
Value
NULL (invisibly)
Examples
library(magrittr)
xs_data <-
serocalculator_example("example_pop_data.csv") %>%
read.csv() %>%
as_pop_data()
check_pop_data(xs_data, verbose = TRUE)
Convert a data.frame (or tibble) into a multidimensional array
Description
df.to.array()
was renamed to df_to_array()
to create a more
consistent API.
Usage
df.to.array(df, dim_var_names, value_var_name = "value")
Find the maximum likelihood estimate of the incidence rate parameter
Description
This function models seroincidence using maximum likelihood estimation; that is, it finds the value of the seroincidence parameter which maximizes the likelihood (i.e., joint probability) of the data.
Usage
est.incidence(
pop_data,
curve_params,
noise_params,
antigen_isos = pop_data$antigen_iso %>% unique(),
lambda_start = 0.1,
stepmin = 1e-08,
stepmax = 3,
verbose = FALSE,
build_graph = FALSE,
print_graph = build_graph & verbose,
...
)
Arguments
pop_data |
a data.frame with cross-sectional serology data per antibody and age, and additional columns |
curve_params |
a
|
noise_params |
a
|
antigen_isos |
Character vector with one or more antibody names. Values must match |
lambda_start |
starting guess for incidence rate, in years/event. |
stepmin |
A positive scalar providing the minimum allowable relative step length. |
stepmax |
a positive scalar which gives the maximum allowable
scaled step length. |
verbose |
logical: if TRUE, print verbose log information to console |
build_graph |
whether to graph the log-likelihood function across a range of incidence rates (lambda values) |
print_graph |
whether to display the log-likelihood curve graph in the course of running |
... |
Arguments passed on to
|
Value
a "seroincidence"
object, which is a stats::nlm()
fit object with extra meta-data attributes lambda_start
, antigen_isos
, and ll_graph
Examples
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est1 <- est.incidence(
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
)
summary(est1)
Estimate Seroincidence
Description
Function to estimate seroincidences based on cross-sectional serology data and longitudinal response model.
Usage
est.incidence.by(
pop_data,
curve_params,
noise_params,
strata,
curve_strata_varnames = strata,
noise_strata_varnames = strata,
antigen_isos = pop_data %>% pull("antigen_iso") %>% unique(),
lambda_start = 0.1,
build_graph = FALSE,
num_cores = 1L,
verbose = FALSE,
print_graph = FALSE,
...
)
Arguments
pop_data |
a data.frame with cross-sectional serology data per
antibody and age, and additional columns corresponding to
each element of the |
curve_params |
a
|
noise_params |
a
|
strata |
a character vector of stratum-defining variables.
Values must be variable names in |
curve_strata_varnames |
A subset of |
noise_strata_varnames |
A subset of |
antigen_isos |
Character vector with one or more antibody names. Values must match |
lambda_start |
starting guess for incidence rate, in years/event. |
build_graph |
whether to graph the log-likelihood function across a range of incidence rates (lambda values) |
num_cores |
Number of processor cores to use for calculations when computing by strata. If set to more than 1 and package parallel is available, then the computations are executed in parallel. Default = 1L. |
verbose |
logical: if TRUE, print verbose log information to console |
print_graph |
whether to display the log-likelihood curve graph in the course of running |
... |
Arguments passed on to
|
Details
If strata
is left empty, a warning will be produced,
recommending that you use est.incidence()
for unstratified analyses,
and then the data will be passed to est.incidence()
.
If for some reason you want to use est.incidence.by()
with no strata instead of calling est.incidence()
,
you may use NA
, NULL
, or ""
as the strata
argument to avoid that warning.
Value
if
strata
has meaningful inputs: An object of class"seroincidence.by"
; i.e., a list of"seroincidence"
objects fromest.incidence()
, one for each stratum, with some meta-data attributes.if
strata
is missing,NULL
,NA
, or""
: An object of class"seroincidence"
.
Examples
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est2 <- est.incidence.by(
strata = c("catchment"),
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
# num_cores = 8 # Allow for parallel processing to decrease run time
iterlim = 5 # limit iterations for the purpose of this example
)
summary(est2)
Small example of noise parameters for typhoid
Description
A subset of noise parameter estimates from the SEES study, for examples and testing.
Usage
example_noise_params_pk
Format
example_noise_params_pk
A curve_params
object (from as_curve_params()
) with 4 rows and 7 columns:
- antigen_iso
which antigen and isotype are being measured (data is in long format)
- Country
Location for which the noise parameters were estimated
- y.low
Lower limit of detection
- eps
Measurement noise, defined by a CV (coefficient of variation) as the ratio of the standard deviation to the mean for replicates. Note that the CV should ideally be measured across plates rather than within the same plate.
- nu
Biological noise: error from cross-reactivity to other antibodies. It is defined as the 95th percentile of the distribution of antibody responses to the antigen-isotype in a population with no exposure.
- y.high
Upper limit of detection
- Lab
Lab for which noise was estimated.
Source
Calculate negative log-likelihood (deviance) for one antigen:isotype pair and several values of incidence
Description
Calculates negative log-likelihood (deviance) for one antigen:isotype pair and several values of incidence (lambda
).
Usage
f_dev(lambda, csdata, lnpars, cond)
Arguments
lambda |
a numeric vector of incidence parameters, in events per person-year |
Details
Vectorized version of f_dev0()
; interface with C lib serocalc.so
Value
a numeric vector of negative log-likelihoods,
corresponding to the elements of input lambda
Examples
library(dplyr)
library(tibble)
# load in longitudinal parameters
curve_params <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# load in pop data
xs_data <-
sees_pop_data_pk_100
#Load noise params
noise_params <- tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # low cutoff (llod)
y.high = c(5e6, 5e6)) # high cutoff (y.high)
cur_antibody = "HlyE_IgA"
cur_data =
xs_data %>%
dplyr::filter(
.data$catchment == "aku",
.data$antigen_iso == cur_antibody) %>%
dplyr::slice_head(n = 100)
cur_curve_params =
curve_params %>%
dplyr::filter(.data$antigen_iso == cur_antibody) %>%
dplyr::slice_head(n = 100)
cur_noise_params =
noise_params %>%
dplyr::filter(.data$antigen_iso == cur_antibody)
if(!is.element('d', names(cur_curve_params)))
{
cur_curve_params =
cur_curve_params %>%
dplyr::mutate(
alpha = .data$alpha * 365.25,
d = .data$r - 1)
}
lambdas = seq(.1, .2, by = .01)
f_dev(
lambda = lambdas,
csdata = cur_data,
lnpars = cur_curve_params,
cond = cur_noise_params
)
Calculate negative log-likelihood (deviance) for one antigen:isotype pair and incidence rate
Description
Calculate negative log-likelihood (deviance) for one antigen:isotype pair and incidence rate
Usage
f_dev0(lambda, csdata, lnpars, cond)
Arguments
lambda |
|
csdata |
cross-sectional sample data containing variables |
lnpars |
longitudinal antibody decay model parameters |
cond |
measurement noise parameters |
Details
interface with C lib serocalc.so
Value
a numeric()
negative log-likelihood,
corresponding to input lambda
Examples
library(dplyr)
library(tibble)
# load in longitudinal parameters
curve_params <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# load in pop data
xs_data <-
sees_pop_data_pk_100
#Load noise params
noise_params <- tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # low cutoff (llod)
y.high = c(5e6, 5e6)) # high cutoff (y.high)
cur_antibody = "HlyE_IgA"
cur_data <-
xs_data %>%
dplyr::filter(
.data$catchment == "dhaka",
.data$antigen_iso == cur_antibody) %>%
dplyr::slice_head(n = 100)
cur_curve_params <-
curve_params %>%
dplyr::filter(.data$antigen_iso == cur_antibody) %>%
dplyr::slice_head(n = 100)
cur_noise_params <-
noise_params %>%
dplyr::filter(.data$antigen_iso == cur_antibody)
if(!is.element('d', names(cur_curve_params)))
{
cur_curve_params <-
cur_curve_params %>%
dplyr::mutate(
alpha = .data$alpha * 365.25,
d = .data$r - 1)
}
lambda = 0.1
f_dev0(
lambda = lambda,
csdata = cur_data,
lnpars = cur_curve_params,
cond = cur_noise_params
)
Calculate negative log-likelihood (deviance)
Description
fdev()
was renamed to f_dev()
to create a more
consistent API.
Usage
fdev(lambda, csdata, lnpars, cond)
Graph estimated antibody decay curve
Description
Graph estimated antibody decay curve
Usage
graph.curve.params(
curve_params,
antigen_isos = unique(curve_params$antigen_iso),
verbose = FALSE
)
Arguments
curve_params |
a |
antigen_isos |
antigen isotypes |
verbose |
verbose output |
Value
a ggplot2::ggplot()
object
Examples
curve <-
typhoid_curves_nostrat_100 |>
dplyr::filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
plot1 <- graph.curve.params(curve)
print(plot1)
Graph log-likelihood of data
Description
Graph log-likelihood of data
Usage
graph_loglik(
pop_data,
curve_params,
noise_params,
antigen_isos = pop_data %>% get_biomarker_levels(),
x = 10^seq(-3, 0, by = 0.1),
highlight_points = NULL,
highlight_point_names = "highlight_points",
log_x = FALSE,
previous_plot = NULL,
curve_label = paste(antigen_isos, collapse = " + "),
...
)
Arguments
pop_data |
a |
curve_params |
a
|
noise_params |
a
|
antigen_isos |
Character vector listing one or more antigen isotypes.
Values must match |
x |
sequence of lambda values to graph |
highlight_points |
a possible highlighted value |
highlight_point_names |
labels for highlighted points |
log_x |
should the x-axis be on a logarithmic scale ( |
previous_plot |
if not NULL, the current data is added to the existing graph |
curve_label |
if not NULL, add a label for the curve |
... |
Arguments passed on to
|
Value
Examples
library(dplyr)
library(tibble)
# Load cross-sectional data
xs_data <-
sees_pop_data_pk_100
# Load curve parameters and subset for the purposes of this example
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# Load noise parameters
cond <- tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # Low cutoff (llod)
y.high = c(5e6, 5e6)) # High cutoff (y.high)
# Graph the log likelihood
lik_HlyE_IgA <- # nolint: object_name_linter
graph_loglik(
pop_data = xs_data,
curve_params = curve,
noise_params = cond,
antigen_isos = "HlyE_IgA",
log_x = TRUE
)
lik_HlyE_IgA # nolint: object_name_linter
extract a row from longitudinal parameter set
Description
take a random sample from longitudinal parameter set
given age at infection, for a list of antibodies
ldpar()
was renamed to row_longitudinal_parameter()
to create a more
consistent API.
Usage
ldpar(age, antigen_isos, nmc, npar, ...)
Arguments
age |
age at infection |
antigen_isos |
antigen isotypes |
nmc |
mcmc sample to use |
npar |
number of parameters |
... |
passed to |
Value
an array of parameters: c(y0,b0,mu0,mu1,c1,alpha,shape)
Calculate log-likelihood
Description
Calculates the log-likelihood of a set of cross-sectional antibody response
data, for a given incidence rate (lambda
) value.
llik()
was renamed to log_likelihood()
to create a more
consistent API.
Usage
llik(...)
Load antibody decay curve parameter samples
Description
Load antibody decay curve parameter samples
Usage
load_curve_params(file_path, antigen_isos = NULL)
Arguments
file_path |
path to an RDS file containing MCMC samples of antibody decay curve parameters |
antigen_isos |
|
Value
a curve_params
object (a tibble::tbl_df with extra attribute antigen_isos
)
Examples
curve <- load_curve_params(serocalculator_example("example_curve_params.rds"))
print(curve)
Load noise parameters
Description
Load noise parameters
Usage
load_noise_params(file_path, antigen_isos = NULL)
Arguments
file_path |
path to an RDS file containing biologic
and measurement noise of antibody decay curve parameters
|
antigen_isos |
|
Value
a noise
object (a tibble::tbl_df
with extra attribute antigen_isos
)
Examples
noise <- load_noise_params(serocalculator_example("example_noise_params.rds"))
print(noise)
Load a cross-sectional antibody survey data set
Description
Load a cross-sectional antibody survey data set
Usage
load_pop_data(file_path, ...)
Arguments
file_path |
path to an RDS file containing a cross-sectional antibody
survey data set, stored as a |
... |
Arguments passed on to
|
Value
a pop_data
object (a tibble::tbl_df with extra attributes)
Examples
xs_data <- load_pop_data(serocalculator_example("example_pop_data.rds"))
print(xs_data)
Calculate log-likelihood
Description
Calculates the log-likelihood of a set of cross-sectional antibody response
data, for a given incidence rate (lambda
) value.
Usage
log_likelihood(
lambda,
pop_data,
curve_params,
noise_params,
antigen_isos = get_biomarker_levels(pop_data),
verbose = FALSE,
...
)
Arguments
lambda |
a numeric vector of incidence parameters, in events per person-year |
pop_data |
a |
curve_params |
a
|
noise_params |
a
|
antigen_isos |
Character vector listing one or more antigen isotypes.
Values must match |
verbose |
logical: if TRUE, print verbose log information to console |
... |
additional arguments passed to other functions (not currently used). |
Value
the log-likelihood of the data with the current parameter values
Examples
library(dplyr)
library(tibble)
# Load cross-sectional data
xs_data <-
sees_pop_data_pk_100
# Load curve parameters and subset for the purposes of this example
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
# Load noise params
cond <- tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # low cutoff (llod)
y.high = c(5e6, 5e6)
) # high cutoff (y.high)
# Calculate log-likelihood
ll_AG <- log_likelihood(
pop_data = xs_data,
curve_params = curve,
noise_params = cond,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
lambda = 0.1
) %>% print()
generate random sample from baseline distribution
Description
generate random sample from baseline distribution
Usage
mk_baseline(kab, n = 1, blims, ...)
Arguments
kab |
index for which row of antibody baseline limits to read from |
n |
number of observations |
blims |
range of possible baseline antibody levels |
... |
not currently used |
Value
a numeric()
vector
generate random sample from baseline distribution
Description
mkbaseline()
was renamed to mk_baseline()
to create a more
consistent API.
Usage
mkbaseline(kab, n = 1, blims, ...)
Arguments
kab |
index for which row of antibody baseline limits to read from |
n |
number of observations |
blims |
range of possible baseline antibody levels |
... |
not currently used |
Value
a numeric()
vector
Graph an antibody decay curve model
Description
Graph an antibody decay curve model
Usage
plot_curve_params_one_ab(
object,
verbose = FALSE,
alpha = 0.4,
n_curves = 100,
n_points = 1000,
log_x = FALSE,
log_y = TRUE,
rows_to_graph = seq_len(min(n_curves, nrow(object))),
xlim = c(10^-1, 10^3.1),
...
)
Arguments
object |
a |
verbose |
verbose output |
alpha |
(passed to
|
n_curves |
how many curves to plot (see details). |
n_points |
Number of points to interpolate along the x axis
(passed to |
log_x |
should the x-axis be on a logarithmic scale ( |
log_y |
should the Y-axis be on a logarithmic scale
(default, |
rows_to_graph |
which rows of |
xlim |
range of x values to graph |
... |
Arguments passed on to
|
Details
n_curves
and rows_to_graph
In most cases, curve_params
will contain too many rows of MCMC
samples for all of these samples to be plotted at once.
Setting the
n_curves
argument to a value smaller than the number of rows incurve_params
will cause this function to select the firstn_curves
rows to graph.Setting
n_curves
larger than the number of rows in ' will result all curves being plotted.If the user directly specifies the
rows_to_graph
argument, thenn_curves
has no effect.
Value
a ggplot2::ggplot()
object
Examples
library(dplyr) # loads the `%>%` operator and `dplyr::filter()`
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso == ("HlyE_IgG")) %>%
serocalculator:::plot_curve_params_one_ab()
curve
Print Method for seroincidence
Object
Description
Custom print()
function to show output of the seroincidence calculator est.incidence()
.
Usage
## S3 method for class 'seroincidence'
print(x, ...)
Arguments
x |
A list containing output of function |
... |
Additional arguments affecting the summary produced. |
Value
an invisible copy of input parameter x
Examples
## Not run:
# Estimate seroincidence
seroincidence <- est.incidence.by(...)
# Print the seroincidence object to the console
print(seroincidence)
# Or simply type (appropriate print method will be invoked automatically)
seroincidence
## End(Not run)
Print Method for seroincidence.by
Object
Description
Custom print()
function to show output of the seroincidence calculator est.incidence.by()
.
Usage
## S3 method for class 'seroincidence.by'
print(x, ...)
Arguments
x |
A list containing output of function |
... |
Additional arguments affecting the summary produced. |
Value
an invisible copy of input parameter x
Examples
## Not run:
# Estimate seroincidence
seroincidence <- est.incidence.by(...)
# Print the seroincidence object to the console
print(seroincidence)
# Or simply type (appropriate print method will be invoked automatically)
seroincidence
## End(Not run)
Print Method for Seroincidence Summary Object
Description
Custom print()
function for "summary.seroincidence.by" objects (constructed by summary.seroincidence.by()
)
Usage
## S3 method for class 'summary.seroincidence.by'
print(x, ...)
Arguments
x |
A "summary.seroincidence.by" object (constructed by |
... |
Additional arguments affecting the summary produced. |
Value
an invisible copy of input parameter x
Examples
## Not run:
# Estimate seroincidence
seroincidence <- est.incidence.by(...)
# Calculate summary statistics for the seroincidence object
seroincidenceSummary <- summary(seroincidence)
# Print the summary of seroincidence object to the console
print(seroincidenceSummary)
# Or simply type (appropriate print method will be invoked automatically)
seroincidenceSummary
## End(Not run)
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- ggplot2
extract a row from longitudinal parameter set
Description
take a random sample from longitudinal parameter set given age at infection, for a list of antibodies
Usage
row_longitudinal_parameter(age, antigen_isos, nmc, npar, ...)
Arguments
age |
age at infection |
antigen_isos |
antigen isotypes |
nmc |
mcmc sample to use |
npar |
number of parameters |
... |
passed to |
Value
an array of parameters: c(y0,b0,mu0,mu1,c1,alpha,shape)
Small example cross-sectional data set
Description
A subset of data from the SEES data, for examples and testing.
Usage
sees_pop_data_pk_100
Format
sees_pop_data_pk_100
A pop_data
object (from as_pop_data()
) with 200 rows and 8 columns:
- id
Observation ID
- Country
Country where the participant was living
- cluster
survey sampling cluster
- catchment
survey catchment area
- age
participant's age when sampled, in years
- antigen_iso
which antigen and isotype are being measured (data is in long format)
- value
concentration of antigen isotype, in ELISA units
Source
Small example cross-sectional data set
Description
A subset of data from the SEES data, for examples and testing.
Usage
sees_pop_data_pk_100_old_names
Format
sees_pop_data_pk_100_old_names
A pop_data
object (from as_pop_data()
) with 200 rows and 8 columns:
- index_id
Observation ID
- Country
Country where the participant was living
- cluster
survey sampling cluster
- catchment
survey catchment area
- Age
participant's age when sampled, in years
- antigen_iso
which antigen and isotype are being measured (data is in long format)
- result
concentration of antigen isotype, in ELISA units
Source
Get path to an example file
Description
The serocalculator package comes bundled with a number of sample files
in its inst/extdata
directory.
This serocalculator_example()
function make those sample files
easy to access.
Usage
serocalculator_example(file = NULL)
Arguments
file |
Name of file. If |
Details
Adapted from readr::readr_example()
following the guidance in
https://r-pkgs.org/data.html#sec-data-example-path-helper.
Value
a character string providing
the path to the file specified by file
,
or a vector or available files if file = NULL
.
Examples
serocalculator_example()
serocalculator_example("example_pop_data.csv")
Simulate a cross-sectional serosurvey with noise
Description
Makes a cross-sectional data set (age, y(t) set) and adds noise, if desired.
Usage
sim.cs(
lambda = 0.1,
n.smpl = 100,
age.rng = c(0, 20),
age.fx = NA,
antigen_isos,
n.mc = 0,
renew.params = FALSE,
add.noise = FALSE,
curve_params,
noise_limits,
format = "wide",
verbose = FALSE,
...
)
Arguments
lambda |
a |
n.smpl |
number of samples to simulate |
age.rng |
age range of sampled individuals, in years |
age.fx |
specify the curve parameters to use by age (does nothing at present?) |
antigen_isos |
Character vector with one or more antibody names. Values must match |
n.mc |
how many MCMC samples to use:
|
renew.params |
whether to generate a new parameter set for each infection
|
add.noise |
a |
curve_params |
a
|
noise_limits |
biologic noise distribution parameters |
format |
a
|
verbose |
logical: if TRUE, print verbose log information to console |
... |
additional arguments passed to |
Value
a tibble::tbl_df containing simulated cross-sectional serosurvey data, with columns:
-
age
: age (in days) one column for each element in the
antigen_iso
input argument
Examples
# Load curve parameters
curve <-
typhoid_curves_nostrat_100
# Specify the antibody-isotype responses to include in analyses
antibodies <- c("HlyE_IgA", "HlyE_IgG")
# Set seed to reproduce results
set.seed(54321)
# Simulated incidence rate per person-year
lambda <- 0.2;
# Range covered in simulations
lifespan <- c(0, 10);
# Cross-sectional sample size
nrep <- 100
# Biologic noise distribution
dlims <- rbind(
"HlyE_IgA" = c(min = 0, max = 0.5),
"HlyE_IgG" = c(min = 0, max = 0.5)
)
# Generate cross-sectional data
csdata <- sim.cs(
curve_params = curve,
lambda = lambda,
n.smpl = nrep,
age.rng = lifespan,
antigen_isos = antibodies,
n.mc = 0,
renew.params = TRUE,
add.noise = TRUE,
noise_limits = dlims,
format = "long"
)
Simulate multiple data sets
Description
Simulate multiple data sets
Usage
sim.cs.multi(
nclus = 10,
lambdas = c(0.05, 0.1, 0.15, 0.2, 0.3),
num_cores = max(1, parallel::detectCores() - 1),
rng_seed = 1234,
renew.params = TRUE,
add.noise = TRUE,
verbose = FALSE,
...
)
Arguments
nclus |
number of clusters |
lambdas |
#incidence rate, in events/person*year |
num_cores |
number of cores to use for parallel computations |
rng_seed |
starting seed for random number generator, passed to |
renew.params |
whether to generate a new parameter set for each infection
|
add.noise |
a |
verbose |
whether to report verbose information |
... |
Arguments passed on to
|
Value
collect cross-sectional data
Description
output: (age, y(t) set)
Usage
simcs.tinf(
lambda,
n.smpl,
age.rng,
age.fx = NA,
antigen_isos,
n.mc = 0,
renew.params = FALSE,
...
)
Arguments
lambda |
seroconversion rate (in events/person-day) |
n.smpl |
number of samples n.smpl (= nr of simulated records) |
age.rng |
age range to use for simulating data, in days |
age.fx |
age.fx for parameter sample (age.fx = NA for age at infection) |
antigen_isos |
Character vector with one or more antibody names. Values must match |
n.mc |
|
renew.params |
|
... |
arguments passed to |
Value
an array()
simulate antibody kinetics of y over a time interval
Description
simulate antibody kinetics of y over a time interval
Usage
simresp.tinf(
lambda,
t.end,
age.fx,
antigen_isos,
n.mc = 0,
renew.params,
predpar,
...
)
Arguments
lambda |
seroconversion rate (1/days), |
t.end |
end of time interval (beginning is time 0) in days(?) |
age.fx |
parameter estimates for fixed age (age.fx in years) or not. when age.fx = NA then age at infection is used. |
antigen_isos |
antigen isotypes |
n.mc |
a posterior sample may be selected (1:4000), or not when n.mc = 0 a posterior sample is chosen at random. |
renew.params |
At infection, a new parameter sample may be generated (when |
predpar |
an
|
... |
Arguments passed on to
|
Value
This function returns a list()
with:
t = times (in days, birth at day 0),
b = bacteria level, for each antibody signal (not used; probably meaningless),
y = antibody level, for each antibody signal
smp = whether an infection involves a big jump or a small jump
t.inf = times when infections have occurred.
Extract strata from an object
Description
Generic method for extracting strata from objects. See strata.seroincidence.by()
Usage
strata(x)
Arguments
x |
an object |
Value
the strata of x
Extract the Strata
attribute from an object, if present
Description
Extract the Strata
attribute from an object, if present
Usage
## S3 method for class 'seroincidence.by'
strata(x)
Arguments
x |
any R object |
Value
a
tibble::tibble()
with strata in rows, or-
NULL
ifx
does not have a"strata"
attribute
Split data by stratum
Description
Split biomarker data, decay curve parameters, and noise parameters to prepare for stratified incidence estimation.
Usage
stratify_data(
data,
curve_params,
noise_params,
strata_varnames = "",
curve_strata_varnames = NULL,
noise_strata_varnames = NULL,
antigen_isos = data %>% attr("antigen_isos")
)
Arguments
curve_params |
a
|
noise_params |
a
|
strata_varnames |
|
curve_strata_varnames |
A subset of |
noise_strata_varnames |
A subset of |
antigen_isos |
Character vector with one or more antibody names. Values must match |
Value
a "biomarker_data_and_params.list"
object (a list with extra attributes "strata"
, "antigen_isos"
, etc)
Examples
## Not run:
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
stratified_data =
stratify_data(
data = xs_data,
curve_params = curve,
noise_params = noise,
strata_varnames = "catchment",
curve_strata_varnames = NULL,
noise_strata_varnames = NULL
)
## End(Not run)
Summarize cross-sectional antibody survey data
Description
summary()
method for pop_data
objects
Usage
## S3 method for class 'pop_data'
summary(object, strata = NULL, ...)
## S3 method for class 'summary.pop_data'
print(x, ...)
Arguments
object |
a |
strata |
a |
... |
unused |
x |
an object of class |
Value
a summary.pop_data
object, which is a list containing two summary tables:
-
age_summary
summarizingage
-
ab_summary
summarizingvalue
, stratified byantigen_iso
Examples
library(dplyr)
xs_data <-
sees_pop_data_pk_100
summary(xs_data, strata = "catchment")
Summarizing fitted seroincidence models
Description
This function is a summary()
method for seroincidence
objects.
Usage
## S3 method for class 'seroincidence'
summary(object, coverage = 0.95, ...)
Arguments
object |
a |
coverage |
desired confidence interval coverage probability |
... |
unused |
Value
a tibble::tibble()
containing the following:
-
est.start
: the starting guess for incidence rate -
ageCat
: the age category we are analyzing -
incidence.rate
: the estimated incidence rate, per person year -
CI.lwr
: lower limit of confidence interval for incidence rate -
CI.upr
: upper limit of confidence interval for incidence rate -
coverage
: coverage probability -
log.lik
: log-likelihood of the data used in the call toest.incidence()
, evaluated at the maximum-likelihood estimate of lambda (i.e., atincidence.rate
) -
iterations
: the number of iterations used -
antigen_isos
: a list of antigen isotypes used in the analysis -
nlm.convergence.code
: information about convergence of the likelihood maximization procedure performed bynlm()
(see "Value" section ofstats::nlm()
, componentcode
); codes 3-5 indicate issues:1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solution.
3: Last global step failed to locate a point lower than x. Either x is an approximate local minimum of the function, the function is too non-linear for this algorithm, or
stepmin
inest.incidence()
(a.k.a.,steptol
instats::nlm()
) is too large.4: iteration limit exceeded; increase
iterlim
.5: maximum step size
stepmax
exceeded five consecutive times. Either the function is unbounded below, becomes asymptotic to a finite value from above in some direction orstepmax
is too small.
Examples
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
est1 <- est.incidence(
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA")
)
summary(est1)
Summary Method for "seroincidence.by"
Objects
Description
Calculate seroincidence from output of the seroincidence calculator
est.incidence.by()
.
Usage
## S3 method for class 'seroincidence.by'
summary(
object,
confidence_level = 0.95,
showDeviance = TRUE,
showConvergence = TRUE,
...
)
Arguments
object |
A dataframe containing output of function |
confidence_level |
desired confidence interval coverage probability |
showDeviance |
Logical flag ( |
showConvergence |
Logical flag ( |
... |
Additional arguments affecting the summary produced. |
Value
A summary.seroincidence.by
object, which is a tibble::tibble, with the following columns:
-
incidence.rate
maximum likelihood estimate oflambda
(seroincidence) -
CI.lwr
lower confidence bound for lambda -
CI.upr
upper confidence bound for lambda -
Deviance
(included ifshowDeviance = TRUE
) Negative log likelihood (NLL) at estimated (maximum likelihood)lambda
)-
nlm.convergence.code
(included ifshowConvergence = TRUE
) Convergence information returned bystats::nlm()
The object also has the following metadata (accessible throughbase::attr()
):
-
-
antigen_isos
Character vector with names of input antigen isotypes used inest.incidence.by()
-
Strata
Character with names of strata used inest.incidence.by()
Examples
library(dplyr)
xs_data <-
sees_pop_data_pk_100
curve <-
typhoid_curves_nostrat_100 %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
noise <-
example_noise_params_pk
# estimate seroincidence
est2 <- est.incidence.by(
strata = c("catchment"),
pop_data = xs_data,
curve_params = curve,
noise_params = noise,
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
#num_cores = 8 # Allow for parallel processing to decrease run time
)
# calculate summary statistics for the seroincidence object
summary(est2)
Small example of antibody response curve parameters for typhoid
Description
A subset of data from the SEES study, for examples and testing.
Usage
typhoid_curves_nostrat_100
Format
typhoid_curves_nostrat_100
A curve_params
object (from as_curve_params()
) with 500 rows and 7
columns:
- antigen_iso
which antigen and isotype are being measured (data is in long format)
- iter
MCMC iteration
- y0
Antibody concentration at t = 0 (start of active infection)
- y1
Antibody concentration at t =
t1
(end of active infection)- t1
Duration of active infection
- alpha
Antibody decay rate coefficient
- r
Antibody decay rate exponent parameter
Source
Warn about missing stratifying variables in a dataset
Description
Warn about missing stratifying variables in a dataset
Usage
warn.missing.strata(data, strata, dataname)
Arguments
data |
the dataset that should contain the strata |
strata |
a |
dataname |
the name of the dataset, for use in warning messages if some strata are missing. |
Value
a character()
vector of the subset of stratifying variables that are present in pop_data
Examples
## Not run:
expected_strata <- data.frame(Species = "banana", type = "orchid")
warn.missing.strata(iris, expected_strata, dataname = "iris")
## End(Not run)