Package 'rsprite2'

July 23, 2025

```
Title Identify Distributions that Match Reported Sample Parameters (SPRITE)

Version 0.2.1
```

Description The SPRITE algorithm creates possible distributions of discrete responses based on reported sample parameters, such as mean, standard deviation and range (Heathers et al., 2018, <doi:10.7287/peerj.preprints.26968v1>). This package implements it, drawing heavily on the code for Nick Brown's 'rSPRITE' Shiny app <https://shiny.ieis.tue.nl/sprite/>.

In addition, it supports the modeling of distributions based on multi-item (Likert-type)

In addition, it supports the modeling of distributions based on multi-item (Likert-type) scales and the use of restrictions on the frequency of particular responses.

```
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Suggests ggplot2, testthat (>= 3.0.0), tibble, tidyr, rlang, scales
Config/testthat/edition 3
URL https://lukaswallrich.github.io/rsprite2/
BugReports https://github.com/LukasWallrich/rsprite2/issues
Imports checkmate, Rdpack
RdMacros Rdpack
NeedsCompilation no
Author Lukas Wallrich [aut, cre] (ORCID:
      <https://orcid.org/0000-0003-2121-5177>),
     Aurélien Allard [ctb]
Maintainer Lukas Wallrich < lukas.wallrich@gmail.com>
Repository CRAN
Date/Publication 2023-07-06 21:30:03 UTC
```

10

Contents

find_possible_distribution .														2
find_possible_distributions														3
GRIMMER_test														4
GRIM_test														5
plot_distributions														6
set_parameters														7
_														

find_possible_distribution

Find a possible distribution.

Description

Index

This function aims to find a possible distribution that would give rise to the observed sample parameters. For that, you need to pass a list of parameters, best created with set_parameters

Usage

find_possible_distribution(parameters, seed = NULL, values_only = FALSE)

Arguments

parameters List of parameters, see set_parameters

seed An integer to use as the seed for random number generation. Set this in scripts

to ensure reproducibility.

values_only Should only values or a more informative list be returned. See Value section.

Value

Unless values_only = TRUE, a list with:

outcome success or failure - character

distribution The distribution that was found (if success) / that had the closest variance (if

failure) - numeric

mean The exact mean of the distribution - numeric

sd The SD of the distribution that was found (success) / that came closest (failure)

- numeric

iterations The number of iterations required to achieve the specified SD - numeric

If values_only = TRUE, then the distribution is returned if one was found, and NULL if it failed.

Examples

find_possible_distributions

Find several possible distributions.

Description

This function aims to find several possible distribution that would give rise to the observed sample parameters. For that, you need to pass a list of parameters, created with set_parameters

Usage

```
find_possible_distributions(
  parameters,
  n_distributions = 10,
  seed = NULL,
  return_tibble = TRUE,
  return_failures = FALSE
)
```

Arguments

parameters List of parameters, see set_parameters

 $n_distributions$

The target number of distributions to return.

seed An integer to use as the seed for random number generation. Set this in scripts

to ensure reproducibility.

return_tibble Should a tibble, rather than a list, be returned? Requires the tibble-package,

ignored if that package is not available.

return_failures

Should distributions that failed to produce the desired SD be returned? Defaults

to false

Value

A tibble or list (depending on the return_tibble argument) with:

outcome success or failure - character

distribution The distribution that was found (if success) / that had the closest variance (if

failure) - numeric

mean The exact mean of the distribution - numeric

GRIMMER_test

sd The SD of the distribution that was found (success) / that came closest (failure)

- numeric

iterations The number of iterations required to achieve the specified SD - numeric - the

first time this distribution was found

Examples

GRIMMER_test

GRIMMER test for standard deviation

Description

This function tests whether a given standard deviation (with a specific precision) can result from a sample of a given size based on integer responses to one or more items. The test was first proposed by Anaya (2016); here, the algorithm developed by Allard (2018) is used, extended by Aurélien Allard to support multi-item scales.

Usage

```
GRIMMER_test(
  mean,
  sd,
  n_obs,
  m_prec = NULL,
  sd_prec = NULL,
  n_items = 1,
  min_val = NULL,
  max_val = NULL
)
```

Arguments

mean	The mean of the distribution
sd	The standard deviation of the distribution
n_obs	The number of observations (sample size)
m_prec	The precision of the mean, as number of digits after the decimal point. If not provided, taken based on the significant digits of mean - so only needed if reported mean ends in 0
sd_prec	The precision of the standard deviation, again only needed if reported standard deviation ends in 0.

GRIM_test 5

n_items	Number of items in scale, if distribution represents scale averages. Defaults to 1, which represents any single-item measure.
min_val	(Optional) Scale minimum. If provided alongside max_val, the function checks whether the SD is consistent with that range.
max_val	(Optional) Scale maximum.

Value

Logical TRUE/FALSE indicating whether given standard deviation is possible, given the other parameters

References

Anaya J (2016). "The GRIMMER test: A method for testing the validity of reported measures of variability." *PeerJ Preprints*, **4**, e2400v1.

Examples

```
# A sample of 18 integers with mean 3.44 cannot have an SD of 2.47. This is shown by GRIMMER\_test(mean = 3.44, sd = 2.47, n\_obs = 18)
```

GRIM_test	GRIM test for mean	

Description

This function tests whether a given mean (with a specific precision) can result from a sample of a given size based on integer responses to one or more items. The test is based on Brown & Heathers (2017). If return_values = TRUE and if there is more than one precise mean compatible with the given parameters, all possible means are returned. In that case, if the given mean is not consistent, the closest consistent mean is returned with a warning.

Usage

```
GRIM_test(mean, n_obs, m_prec = NULL, n_items = 1, return_values = FALSE)
```

Arguments

mean	The mean of the distribution
n_obs	The number of observations (sample size)
m_prec	The precision of the mean, as number of digits after the decimal point. If not provided, taken based on the significant digits of mean - so only needed if reported mean ends in 0
n_items	Number of items in scale, if distribution represents scale averages. Defaults to 1, which represents any single-item measure.
return_values	Should all means consistent with the given parameters be returned?

6 plot_distributions

Value

Either TRUE/FALSE, or all possible means (if test passes)/closest consistent mean (if test fails)

References

Brown NJ, Heathers JA (2017). "The GRIM test: A simple technique detects numerous anomalies in the reporting of results in psychology." *Social Psychological and Personality Science*, **8**(4), 363–369.

Examples

```
# A sample of 28 integers cannot result in a mean of 5.19. This is shown by
GRIM_test(5.19, 28)

# To find the closest possible mean, set return_values to TRUE
GRIM_test(5.19, 28, return_values = TRUE)
```

plot_distributions

Plot distributions

Description

This plots distributions identified by find_possible_distributions using ggplot2. They can be shown as histograms or as cumulative distributions (ECDF) plots. The latter give more information, yet not all audiences are familiar with them.

Usage

```
plot_distributions(
  distributions,
  plot_type = c("auto", "histogram", "ecdf", "density"),
  max_plots = 100,
  show_ids = FALSE,
  facets = NULL
)
```

Arguments

distributions	Tibble with a column distribution and an identifier (id), typically as returned from find_possible_distributions.
plot_type	Plot multiple histograms, or overlapping cumulative distribution plots, or density plots? "auto" is to plot histograms if up to 9 distributions are passed, or if there are fewer than 10 discrete values, and empirical cumulative distribution plots otherwise
max_plots	How many distributions should <i>at most</i> be plotted? If more are passed, this number is randomly selected.

set_parameters 7

show_ids Should ids of the distributions be shown with ecdf and density charts? Defaults to no, since the default ids are not meaningful.

Should distributions be shown in one chart or in multiple small charts? Only

considered for ecdf and density charts, histograms are always shown in facets

Value

A ggplot2 object that can be styled with functions such as labs or theme_linedraw

Examples

set_parameters

Define parameters for SPRITE algorithm

Description

The SPRITE algorithm aims to construct possible distributions that conform to observed/reported parameters. This function performs some checks and returns a list of these parameters that can then be passed to the functions that actually generate the distributions (e.g. find_possible_distribution)

Usage

```
set_parameters(
  mean,
  sd,
  n_obs,
  min_val,
  max_val,
  m_prec = NULL,
  sd_prec = NULL,
  n_items = 1,
  restrictions_exact = NULL,
  restrictions_minimum = NULL,
  dont_test = FALSE
)
```

8 set_parameters

Arguments

mean	The mean of the distribution				
sd	The standard deviation of the distribution				
n_obs	The number of observations (sample size)				
min_val	The minimum value				
max_val	The maximum value				
m_prec	The precision of the mean, as number of digits after the decimal point. If not provided, taken based on the significant digits of mean - so only needed if reported mean ends in 0				
sd_prec	The precision of the standard deviation, again only needed if reported standard deviation ends in 0.				
n_items	Number of items in scale, if distribution represents scale averages. Defaults to 1, which represents any single-item measure.				
restrictions_ex	xact				
	Restrictions on the exact frequency of specific responses, see Details				
restrictions_minimum					
	Restrictions on the minimum frequency of specific responses, see Details				
dont_test	By default, this function tests whether the mean is possible, given the sample size (GRIM-test) and whether the standard deviation is possible, given mean and sample size (GRIMMER test), and fails otherwise. If you want to override				

Details

Restrictions can be used to define how often a specific value should appear in the sample. They need to be passed as a list in the form value = frequency. Thus, to specify that there should be no 3s and five 4s in the distribution, you would pass restrictions_exact = list("3" = 0, "4" = 5). To specify that there should be at least one 1 and one 7, you would pass restrictions_minimum = list("1" = 1, "7" = 1). If you just want to specify that the minimum and maximum values appear at least once (for instance when they are the reported rather than possible range), you can use the shortcut restrictions_minimum = "range". Finally, if you work with multi-item scales that result in decimal responses, round those names to two decimal points, e.g., when n_items = 3 you could specify list("1.67" = 0).

this, and run SPRITE anyway, you can set this to TRUE.

Value

A named list of parameters, pre-processed for further rsprite2 functions.

Examples

```
set.seed(1234) #To get reproducible results
# Simple case
sprite_parameters <- set_parameters(mean = 2.2, sd = 1.3, n_obs = 20, min_val = 1, max_val = 5)
find_possible_distribution(sprite_parameters)</pre>
```

set_parameters 9

Index

```
find_possible_distribution, 2, 7
find_possible_distributions, 3, 6
GRIM_test, 5
GRIMMER_test, 4
labs, 7
plot_distributions, 6
set_parameters, 2, 3, 7
theme_linedraw, 7
```