
Package ‘regtools’
July 23, 2025

Version 1.7.0

Title Regression and Classification Tools

Maintainer Norm Matloff <matloff@cs.ucdavis.edu>

Depends R (>= 3.5.0),FNN,gtools

Imports R.utils,mvtnorm,sandwich,MASS,car,data.table,glmnet,rje,text2vec,
polyreg

Suggests knitr, rmarkdown, OpenImageR, cdparcoord, keras, magick,
partools

VignetteBuilder knitr

License GPL (>= 2)

Description Tools for linear, nonlinear and nonparametric regression
and classification. Novel graphical methods for assessment
of parametric models using nonparametric methods. One
vs. All and All vs. All multiclass classification, optional
class probabilities adjustment. Nonparametric regression
(k-NN) for general dimension, local-linear option. Nonlinear
regression with Eickert-White method for dealing with
heteroscedasticity. Utilities for converting time series
to rectangular form. Utilities for conversion between
factors and indicator variables. Some code related to
``Statistical Regression and Classification: from Linear
Models to Machine Learning'', N. Matloff, 2017, CRC,
ISBN 9781498710916.

URL https://github.com/matloff/regtools

BugReports https://github.com/matloff/regtools/issues

NeedsCompilation no

Author Norm Matloff [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9179-6785>),

Robin Yancey [aut],
Bochao Xin [ctb],
Kenneth Lee [ctb],
Rongkui Han [ctb]

1

https://github.com/matloff/regtools
https://github.com/matloff/regtools/issues
https://orcid.org/0000-0001-9179-6785

2 Contents

Repository CRAN

Date/Publication 2022-03-30 17:30:02 UTC

Contents

regtools-package . 3
courseRecords . 4
currency . 4
day,day1 . 5
english . 5
factorsToDummies . 5
falldetection . 8
fineTuning,knnFineTune . 8
knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint 11
krsFit . 16
lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf 18
ltrfreqs . 20
misc . 20
mlb . 22
mlens . 22
mm . 22
multiclass routines . 24
newadult . 26
nlshc . 27
oliveoils . 28
Penrose Linear . 28
phoneme . 29
prgeng . 29
quizDocs . 30
ridgelm,plot.rlm . 31
SwissRoll . 32
textToXY,textToXYpred . 32
TStoX . 33
unscale . 34
weatherTS . 36
xyzPlot . 36
yell10k . 37

Index 38

regtools-package 3

regtools-package Overview and Package Reference Guide

Description

This package provides a broad collection of functions useful for regression and classification anal-
ysis, and machine learning.

Function List

Parametric modeling:

• nonlinear regression: nlshc

• ridge regression: ridgelm, plot

• missing values (also see our toweranNA package): lmac,makeNA,coef.lmac,vcov.lmac,pcac

Diagnostic plots:

• regression diagnostics: parvsnonparplot, nonparvsxplot, nonparvarplot

• other: boundaryplot, nonparvsxplot

Classification:

• unbalanced data: classadjust (see UnbalancedClasses.md)

• All vs. All: avalogtrn, avalogpred

• k-NN reweighting: exploreExpVars, plotExpVars, knnFineTune

Machine learning (also see qeML package):

• k-NN: kNN, kmin, knnest, knntrn, preprocessx, meany, vary, loclin, predict, kmin, pwplot,
bestKperPoint, knnFineTune

• neural networks: krsFit,multCol

• advanced grid search: fineTuning, fineTuningPar, plot.tuner, knnFineTune

• loss: l1, l2, MAPE, ROC

Dummies and R factors Utilities:

• conversion between factors and dummies: dummiesToFactor, dummiesToInt, factorsToDum-
mies, factorToDummies, factorTo012etc, dummiesToInt, hasFactors, charsToFactors, makeAll-
Numeric

• dealing with superset and subsets of factors: toSuperFactor, toSubFactor

Statistics:

• mm

4 currency

Matrix:

• multCols, constCols

Time series:

• convert rectangular to TS: TStoX

Text processing:

• textToXY

Misc.:

• scaling: mmscale, unscale

• data frames: catDFRow, tabletofakedf

• R: getNamedArgs, ulist

• discretize

courseRecords Records from several offerings of a certain course.

Description

The data are in the form of an R list. Each element of the list corresponds to one offering of the
course. Fields are: Class level; major (two different computer science majors, LCSI in Letters and
Science and ECSE in engineering); quiz grade average (scale of 4.0, A+ counting as 4.3); homework
grade average (same scale); and course letter grade.

currency Pre-Euro Era Currency Fluctuations

Description

From Wai Mun Fong and Sam Ouliaris, "Spectral Tests of the Martingale Hypothesis for Exchange
Rates", Journal of Applied Econometrics, Vol. 10, No. 3, 1995, pp. 255-271. Weekly exchange
rates against US dollar, over the period 7 August 1974 to 29 March 1989.

day,day1 5

day,day1 Bike sharing data.

Description

This is the Bike Sharing dataset (day records only) from the UC Irvine Machine Learning Dataset
Repository. Included here with permission of Dr. Hadi Fanaee.

The day data is as on UCI; day1 is modified so that the numeric weather variables are on their
original scale.

The day2 is the same as day1, except that dteday has been removed, and season, mnth, weekday
and weathersit have been converted to R factors.

See https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset for details.

english English vocabulary data

Description

The Stanford WordBank data on vocabulary acquisition in young children. The file consists of about
5500 rows. (There are many NA values, though, and only about 2800 complete cases.) Variables
are age, birth order, sex, mother’s education and vocabulary size.

factorsToDummies Factor Conversion Utilities

Description

Utilities from converting back and forth between factors and dummy variables.

Usage

xyDataframeToMatrix(xy)
dummiesToInt(dms,inclLast=FALSE)
factorToDummies(f,fname,omitLast=FALSE,factorInfo=NULL)
factorsToDummies(dfr,omitLast=FALSE,factorsInfo=NULL,dfOut=FALSE)
dummiesToFactor(dms,inclLast=FALSE)
charsToFactors(dtaf)
factorTo012etc(f,earlierLevels = NULL)
discretize(x,endpts)
getDFclasses(dframe)
hasCharacters(dfr)
hasFactors(x)
toAllNumeric(w,factorsInfo=NULL)
toSubFactor(f,saveLevels,lumpedLevel="zzzOther")
toSuperFactor(inFactor,superLevels)

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

6 factorsToDummies

Arguments

dfOut If TRUE, return a data frame, otherwise a matrix.

dms Matrix or data frame of dummy columns.

inclLast When forming a factor from dummies, include the last dummy as a level if this
is TRUE.

xy A data frame mentioned for prediction, "Y" in last column.

saveLevels In collapsing a factor, which levels to retain.

lumpedLevel Name of new level to be created from levels not retained.

x A numeric vector, except in hasFactors, where it is a data frame.

endpts Vector to be used as breaks in call to cut. To avoid NAs, range of the vector
must cover the range of the input vector.

f A factor.

inFactor Original factor, to be extended.

superLevels New levels to be added to the original factor.

earlierLevels Previous levels found for this factor.

fname A factor name.

dfr A data frame.

w A data frame.

dframe A data frame, for which we wish to find the column classes.

omitLast If TRUE, then generate only k-1 dummies from k factor levels.

factorsInfo Attribute from output of factorsToDummies.

factorInfo Attribute from output of factorToDummies.

dtaf A data frame.

Details

Many R users prefer to express categorical data as R factors, or often work with data that is of this
type to begin with. On the other hand, many regression packages, e.g. lars, disallow factors. These
utilities facilitate conversion from one form to another.

Here is an overview of the roles of the various functions:

• factorToDummies: Convert one factor to dummies, yielding a matrix of dummies correspond-
ing to that factor.

• factorsToDummies: Convert all factors to dummies, yielding a matrix of dummies, corre-
sponding to all factors in the input data frame.

• dummiesToFactor: Convert a set of related dummies to a factor.

• factorTo012etc: Convert a factor to a numeric code, starting at 0.

• dummiesToInt: Convert a related set of dummies to a numeric code, starting at 0.

• charsToFactors: Convert all character columns in a data frame to factors.

• toAllNumeric: Convert all factors in a data frame to dummies, yielding a new version of the
data frame, including its original nonfactor columns.

factorsToDummies 7

• toSubFactor: Coalesce some levels of a factor, yielding a new factor.

• toSuperFactor: Add levels to a factor. Typically used in prediction contexts, in which a
factor in a data point to be predicted does not have all the levels of the same factor in the
training set.
\item xyDataframeToMatrix: Given a data frame to be used in a training set, with "Y" a
factor in the last column, change to all numeric, with dummies in place of all "X" factors and
in place of the "Y" factor.

The optional argument factorsInfo is intended for use in prediction contexts. Typically a set of
new cases will not have all levels of the factor in the training set. Without this argument, only an
incomplete set of dummies would be generated for the set of new cases.

A key point about changing factors to dummies is that, for later prediction after fitting a model in
our training set, one needs to use the same transformations. Say a factor has levels ’abc’, ’de’ and
’f’ (and omitLast = FALSE). If we later have a set of say two new cases to predict, and their values
for this factor are ’de’ and ’f’, we would generate dummies for them but not for ’abc’, incompatible
with the three dummies used in the training set.

Thus the factor names and levels are saved in attributes, and can be used as input: The relations are
as follows:

• factorsToDummies calls factorToDummies on each factor it finds in its input data frame

• factorToDummies outputs and later inputs factorsInfo

• factorsToDummies outputs and later inputs factorsInfo

Other functions:

• getDFclasses: Return a vector of the classes of the columns of a data frame.

• discretize: Partition range of a vector into (not necessarily equal-length) intervals, and
construct a factor from the labels of the intervals that the input elements fall into.

• hasCharacters, hasFactors: Logical scalars, TRUE if the input data frame has any charac-
ter or factor columns.

Value

The function factorToDummies returns a matrix of dummy variables, while factorsToDummies
returns a new version of the input data frame, in which each factor is replaced by columns of
dummies. The function factorToDummies is similar, but changes character vectors to factors.

Author(s)

Norm Matloff

Examples

x <- factor(c('abc','de','f','de'))
xd <- factorToDummies(x,'x')
xd
x.abc x.de
[1,] 1 0

8 fineTuning,knnFineTune

[2,] 0 1
[3,] 0 0
[4,] 0 1
attr(,"factorInfo")
attr(,"factorInfo")$fname
[1] "x"
#
attr(,"factorInfo")$omitLast
[1] TRUE
#
attr(,"factorInfo")$fullLvls
[1] "abc" "de" "f"
w <- factor(c('de','abc','abc'))
wd <- factorToDummies(w,'x',factorInfo=attr(xd,'factorInfo'))
wd
x.abc x.de
[1,] 0 1
[2,] 1 0
[3,] 1 0
attr(,"factorInfo")
attr(,"factorInfo")$fname
[1] "x"
#
attr(,"factorInfo")$omitLast
[1] TRUE
#
attr(,"factorInfo")$fullLvls
[1] "abc" "de" "f"

falldetection Fall Detection Data

Description

Detection falls in the elderly via physiological measurements. Obtained from Kaggle, but is no
longer there.

fineTuning,knnFineTune

Grid Search Plus More

Description

Adds various extra features to grid search for specified tuning parameter/hyperparameter combi-
nations: There is a plot() function, using parallel coordinates graphs to show trends among the
different combinations; and Bonferroni confidence intervals are computed to avoid p-hacking. An
experimental smoothing facility is also included.

fineTuning,knnFineTune 9

Usage

fineTuning(dataset,pars,regCall,nCombs=NULL,specCombs=NULL,nTst=500,
nXval=1,up=TRUE,k=NULL,dispOrderSmoothed=FALSE,
showProgress=TRUE,...)

S3 method for class 'tuner'
plot(x,...)
knnFineTune(data,yName,k,expandVars,ws,classif=FALSE,seed=9999)
fineTuningPar(cls,dataset,pars,regCall,nCombs=NULL,specCombs=NULL,

nTst=500,nXval=1,up=TRUE,k=NULL,dispOrderSmoothed=FALSE)

Arguments

... Arguments to be passed on by fineTuning or plot.tuner.

x Output object from fineTuning.

cls A parallel cluster.

dataset Data frame etc. containing the data to be analyzed.

data The data to be analyzed.

yName Quoted name of "Y" in the column names of data.

expandVars Indices of columns in data to be weighted in distance calculations.

ws Weights to be used for expandVars.

classif Set to TRUE for classification problems.

seed Seed for random number generation.

pars R list, showing the desired tuning parameter values.

regCall Function to be called at each parameter combination, performing the model fit
etc.

nCombs Number of parameter combinations to run. If Null, all will be run

.

nTst Number of data points to be in the test set.

nXval Number of folds to be run for a given data partition and parameter combination.

k Nearest-neighbor smoothing parameter.

up If TRUE, display results in ascending order of performance value.

dispOrderSmoothed

Display in order of smoothed results.

showProgress If TRUE, print each output line as it becomes ready.

specCombs A data frame in which the user specifies # hyperparameter parameter combina-
tions to evaluate.

10 fineTuning,knnFineTune

Details

The user specifies the values for each tuning parameter in pars. This leads to a number of possible
combinations of the parameters. In many cases, there are more combinations than the user wishes
to try, so nCombs of them will be chosen at random.

For each combination, the function will run the analysis specified by the user in regCall. The latter
must have the call form

ftnName(dtrn,dtst,cmbi

Again, note that it is fineTuning that calls this function. It will provide the training and test sets
dtrn and dtst, as well as cmbi ("combination i"), the particular parameter combination to be run
at this moment.

Each chosen combination is run in nXval folds. All specified combinations are run fully, as opposed
to a directional "hill descent" search that hopes it might eliminate poor combinations early in the
process.

The function knnFineTune is a wrapper for fineTuning for k-NN problems.

The function plot.tuner draws a parallel coordinates plot to visualize the grid. The argument x is
the output of fineTuning. Arguments to specify in the ellipsis are: col is the column to be plotted;
disp is the number to display, with 0, -m and +m meaning cases with the m smallest ’smoothed’
values, all cases and the m largest values of ’smoothed’, respectively; jit avoids plotting coincident
lines by adding jitter in the amount jit * range(x) * runif(n,-0.5,0.5).

Value

Object of class **”tuner’**. Contains the grid results, including upper bounds of approximate one-
sided 95 univariate and Bonferroni-Dunn (adjusted for the number of parameter combinations).

Author(s)

Norm Matloff

Examples

mlb data set, predict weight using k-NN, try various values of k

tc <- function(dtrn,dtst,cmbi,...)
{

knnout <- kNN(dtrn[,-3],dtrn[,3],dtst[,-3],as.integer(cmbi[1]))
preds <- knnout$regests
mean(abs(preds - dtst[,3]))

}

data(mlb)
mlb <- mlb[,3:6]
mlb.d <- factorsToDummies(mlb)
fineTuning(mlb.d,list(k=c(5,25)),tc,nTst=100,nXval=2)

knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint11

knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint

k-NN Nonparametric Regression and Classification

Description

Full set of tools for k-NN regression and classification, including both for direct usage and as tools
for assessing the fit of parametric models.

Usage

kNN(x,y,newx=x,kmax,scaleX=TRUE,PCAcomps=0,expandVars=NULL,expandVals=NULL,
smoothingFtn=mean,allK=FALSE,leave1out=FALSE, classif=FALSE,
startAt1=TRUE,saveNhbrs=FALSE,savedNhbrs=NULL)

knnest(y,xdata,k,nearf=meany)
preprocessx(x,kmax,xval=FALSE)
meany(nearIdxs,x,y,predpt)
mediany(nearIdxs,x,y,predpt)
vary(nearIdxs,x,y,predpt)
loclin(nearIdxs,x,y,predpt)
S3 method for class 'knn'
predict(object,...)
kmin(y,xdata,lossftn=l2,nk=5,nearf=meany)
parvsnonparplot(lmout,knnout,cex=1.0)
nonparvsxplot(knnout,lmout=NULL)
nonparvarplot(knnout,returnPts=FALSE)
l2(y,muhat)
l1(y,muhat)
MAPE(yhat,y)
bestKperPoint(x,y,maxK,lossFtn="MAPE",classif=FALSE)
kNNallK(x,y,newx=x,kmax,scaleX=TRUE,PCAcomps=0,

expandVars=NULL,expandVals=NULL,smoothingFtn=mean,
allK=FALSE,leave1out=FALSE,classif=FALSE,startAt1=TRUE)

kNNxv(x,y,k,scaleX=TRUE,PCAcomps=0,smoothingFtn=mean,
nSubSam=500)

knnest(y,xdata,k,nearf=meany)
loclogit(nearIdxs,x,y,predpt)
mediany(nearIdxs,x,y,predpt)
exploreExpVars(xtrn, ytrn, xtst, ytst, k, eVar, maxEVal, lossFtn,

eValIncr = 0.05, classif = FALSE, leave1out = FALSE)
plotExpVars(xtrn,ytrn,xtst,ytst,k,eVars,maxEVal,lossFtn,

ylim,eValIncr=0.05,classif=FALSE,leave1out=FALSE)

Arguments

nearf Function to be applied to a neighborhood.

ylim Range of Y values for plot.

12knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint

lossFtn Loss function for plot.

eVar Variable to be expanded.

eVars Variables to be expanded.

maxEVal Maximum expansion value.

eValIncr Increment in range of expansion value.

xtrn Training set for X.

ytrn Training set for Y.

xtst Test set for X.

ytst Test set for Y.

nearIdxs Indices of the neighbors.

nSubSam Number of folds.

x "X" data, predictors, one row per data point, in the training set.

y Response variable data in the training set. Vector or matrix, the latter case for
vector-valued response, e.g. multiclass classification. In that case, can be a
vector, either (0,1,2,...,) or (1,2,3,...), which automatically is converted into a
matrix of dummies.

newx New data points to be predicted. If NULL in kNN, compute regression functions
estimates on x and save for future prediction with predict.kNN

scaleX If TRUE, call scale on x and newx

PCAcomps If positive, transform x and newx by PCA, using the top PCAcomps principal
components. Disabled.

expandVars Indices of columns in x to expand.

expandVals The corresponding expansion values.

smoothingFtn Function to apply to the "Y" values in the set of nearest neighbors. Built-in
choices are meany, mediany, vary and loclin.

allK If TRUE, find regression estimates for all k through kmax. Currently disabled.

leave1out If TRUE, omit the 1-nearest neighbor from analysis

classif If TRUE, compute the predicted class labels, not just the regression function
values

startAt1 If TRUE, class labels start at 1, else 0.

k Number of nearest neighbors

saveNhbrs If TRUE, place output of FNN::get.knnx into nhbrs of component in return
value

savedNhbrs If non-NULL, this is the nhbrs component in the return value of a previous call;
newx must be the same in both calls

... Needed for consistency with generic. See Details below for ‘arguments.

xdata X and associated neighbor indices. Output of preprocessx.

object Output of knnest.

predpt One point on which to predict, as a vector.

knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint13

kmax Maximal number of nearest neighbors to find.

maxK Maximal number of nearest neighbors to find.

xval Cross-validation flag. If TRUE, then the set of nearest neighbors of a point will
not include the point itself.

lossftn Loss function to be used in cross-validation determination of "best" k.

nk Number of values of k to try in cross-validation.

lmout Output of lm.

knnout Output of knnest.

cex R parameter to control dot size in plot.

muhat Vector of estimated regression function values.

yhat Vector of estimated regression function values.

returnPts If TRUE, return matrix of plotted points.

Details

The kNN function is the main tool here; knnest is being deprecated. (Note too qeKNN, a wrapper for
kNN; more on this below.) Here are the capabilities:

In its most basic form, the function will input training data and output predictions for new cases
newx. By default this is done for a single value of the number k of nearest neighbors, but by setting
allK to TRUE, the user can request that it be done for all k through the specified maximum.

In the second form, newx is set to NULL in the call to kNN. No predictions are made; instead, the
regression function is estimated on all data points in x, which are saved in the return value. Future
new cases can then be predicted from this saved object, via predict.kNN (called via the generic
predict). The call form is predict(knnout,newx,newxK, with a default value of 1 for newxK.

In this second form, the closest k points to the newx in x are determined as usual, but instead of
averaging their Y values, the average is taken over the fitted regression estimates at those points. In
this manner, there is almost no computational cost in the prediction stage.

The second form is intended more for production use, so that neighbor distances need not be re-
peatedly recomputed.

Nearest-neighbor computation can be time-consuming. If more than one value of k is anticipated,
for the same x, y and newx, first run with the largest anticipated value of k, with saveNhbrs set to
TRUE. Then for other values of k, set savedNhbrs to the nhbrs component in the return value of
the first call.

In addition, a novel feature allows the user to weight some predictors more than others. This is done
by scaling the given predictor up or down, according to a specified value. Normally, this should be
done with scaleX = TRUE, which applies scale() to the data. In other words, first we create a "level
playing field" in which all predictors have standard deviation 1.0, then scale some of them up or
down.

Alternatives are provided to calculating the mean Y in the given neighborhood, such as the median
and the variance, the latter of possible use in dealing with heterogeneity in linear models.

Another choice of note is to allow local-linear smoothing, by setting smoothingFtn to loclin.
Here the value of the regression function at a point is predicted from a linear fit to the point’s

14knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint

neighbors. This may be especially helpful to counteract bias near the edges of the data. As in any
regression fit, the number of predictors should be considerably less than the number of neighbors.

Custom functions for smoothing can easily be written, say following the pattern of loclin.

The main alternative to kNN is qeKNN in the qe* ("quick and easy") series. It is more convenient,
e.g. allowing factor inputs, but less flexible.

The functions ovaknntrn and ovaknnpred are multiclass wrappers for knnest and knnpred, thus
also deprecated. Here y is coded 0,1,...,m-1 for the m classes.

The tools here can be useful for fit assessment of parametric models. The parvsnonparplot func-
tion plots fitted values of parameteric model vs. kNN fitted, nonparvsxplot k-NN fitted values
against each predictor, one by one.

The functions l2 and l1 are used to define L2 and L1 loss.

Author(s)

Norm Matloff

Examples

x <- rbind(c(1,0),c(2,5),c(0,5),c(3,3),c(6,3))
y <- c(8,3,10,11,4)
newx <- c(0,0)

kNN(x,y,newx,2,scaleX=FALSE)
$whichClosest
[,1] [,2]
[1,] 1 4
$regests
[1] 9.5

kNN(x,y,newx,3,scaleX=FALSE,smoothingFtn=loclin)$regests
7.307692

knnout <- kNN(x,y,newx,2,scaleX=FALSE)
knnout
$whichClosest
[,1] [,2]
[1,] 1 4
...

Not run:
data(mlb)
mlb <- mlb[,c(4,6,5)] # height, age, weight
fit, then predict 75", age 21, and 72", age 32
knnout <- kNN(mlb[,1:2],mlb[,3],rbind(c(75,21),c(72,32)),25)
knnout$regests
[1] 202.72 195.72

fit now, predict later
knnout <- kNN(mlb[,1:2],mlb[,3],NULL,25)
predict(knnout,c(70,28))

knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint15

[1] 186.48

data(peDumms)
names(peDumms)
ped <- peDumms[,c(1,20,22:27,29,31,32)]
names(ped)

fit, and predict income of a 35-year-old man, MS degree, occupation 101,
worked 50 weeks, using 25 nearest neighbors
kNN(ped[,-10],ped[,10],c(35,1,0,0,1,0,0,0,1,50),25) $regests
[1] 67540

fit, and predict occupation 101 for a 35-year-old man, MS degree,
wage $55K, worked 50 weeks, using 25 nearest neighbors
z <- kNN(ped[,-c(4:8)],ped[,4],c(35,1,0,1,55,50),25,classif=TRUE)
z$regests
[1] 0.16 16
z$ypreds
[1] 0 class 0, i.e. not occupation 101; round(0.24) = 0,
computed by user request, classif = TRUE

the y argument must be either a vector (2-class setting) or a matrix
(multiclass setting)
occs <- as.matrix(ped[, 4:8])
z <- kNN(ped[,-c(4:8)],occs,c(35,1,0,1,72000,50),25,classif=TRUE)
z$ypreds
[1] 3 occupation 3, i.e. 102, is predicted

predict occupation in general; let's bring occ.141 back in (was
excluded as a predictor due to redundancy)
names(peDumms)
[1] "age" "cit.1" "cit.2" "cit.3" "cit.4" "cit.5" "educ.1"
[8] "educ.2" "educ.3" "educ.4" "educ.5" "educ.6" "educ.7" "educ.8"
[15] "educ.9" "educ.10" "educ.11" "educ.12" "educ.13" "educ.14" "educ.15"
[22] "educ.16" "occ.100" "occ.101" "occ.102" "occ.106" "occ.140" "occ.141"
[29] "sex.1" "sex.2" "wageinc" "wkswrkd" "yrentry"
occs <- as.matrix(peDumms[,23:28])
z <- kNN(ped[,-c(4:8)],occs,c(35,1,0,1,72000,50),25,classif=TRUE)
z$ypreds
[1] 3 prediction is occ.102

try weight age 0.5, wkswrked 1.5; use leave1out to avoid overfit
knnout <- kNN(ped[,-10],ped[,10],ped[,-10],25,leave1out=TRUE)
mean(abs(knnout$regests - ped[,10]))
[1] 25341.6

use of the weighted distance feature; deweight age by a factor of 0.5,
put increased weight on weeks worked, factor of 1.5
knnout <- kNN(ped[,-10],ped[,10],ped[,-10],25,

expandVars=c(1,10),expandVals=c(0.5,1.5),leave1out=TRUE)
mean(abs(knnout$regests - ped[,10]))
[1] 25196.61

16 krsFit

End(Not run)

krsFit Tools for Neural Networks

Description

Tools to complement existing neural networks software, notably a more "R-like" wrapper to fitting
data with R’s keras package.

Usage

krsFit(x,y,hidden,acts=rep("relu",length(hidden)),learnRate=0.001,
conv=NULL,xShape=NULL,classif=TRUE,nClass=NULL,nEpoch=30,
scaleX=TRUE,scaleY=TRUE)

krsFitImg(x,y,hidden=c(100,100),acts=rep("relu",length(hidden)),
nClass,nEpoch=30)

S3 method for class 'krsFit'
predict(object,...)
diagNeural(krsFitOut)

Arguments

object An object of class ’krsFit’.
... Data points to be predicted, ’newx’.
x X data, predictors, one row per data point, in the training set. Must be a matrix.
y Numeric vector of Y values. In classification case must be integers, not an R

factor, and take on the values 0,1,2,..., nClass-1

.

hidden Vector of number of units per hidden layer, or the rate for a dropout layer.
acts Vector of names of the activation functions, one per hidden layer. Choices inclde

’relu’, ’sigmoid’, ’tanh’, ’softmax’, ’elu’, ’selu’.
learnRate Learning rate.
conv R list specifying the convolutional layers, if any.
xShape Vector giving the number of rows and columns, and in the convolutional case

with multiple channels, the number of channels.
classif If TRUE, indicates a classification problem.
nClass Number of classes.
nEpoch Number of epochs.
krsFitOut An object returned by krstFit.
scaleX If TRUE, scale X columns.
scaleY If TRUE, scale Y columns.

krsFit 17

Details

The krstFit function is a wrapper for the entire pipeline in fitting the R keras package to a dataset:
Defining the model, compiling, stating the inputs and so on. As a result, the wrapper allows the
user to skip those details (or not need to even know them), and define the model in a manner more
familiar to R users.

The paired predict.krsFit takes as its first argument the output of krstFit, and newx, the points
to be predicted.

Author(s)

Norm Matloff

Examples

Not run:
library(keras)
data(peDumms)
ped <- peDumms[,c(1,20,22:27,29,32,31)]
predict wage income
x <- ped[,-11]
y <- ped[,11]
z <- krsFit(x,y,c(50,50,50),classif=FALSE,nEpoch=25)
preds <- predict(z,x)
mean(abs(preds-y)) # something like 25000

x <- ped[,-(4:8)]
y <- ped[,4:8]
y <- dummiesToInt(y,FALSE) - 1
z <- krsFit(x,y,c(50,50,0.20,50),classif=TRUE,nEpoch=175,nClass=6)
preds <- predict(z,x)
mean(preds == y) # something like 0.39

obtain MNIST training and test sets; the following then uses the
example network of

https://databricks-prod-cloudfront.cloud.databricks.com/
public/4027ec902e239c93eaaa8714f173bcfc/2961012104553482/
4462572393058129/1806228006848429/latest.html

converted to use the krsFit wrapper

x <- mntrn[,-785] / 255
y <- mntrn[,785]
xShape <- c(28,28)

define convolutional layers
conv1 <- list(type='conv2d',filters=32,kern=3)
conv2 <- list(type='pool',kern=2)
conv3 <- list(type='conv2d',filters=64,kern=3)
conv4 <- list(type='pool',kern=2)
conv5 <- list(type='drop',drop=0.5)

18 lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf

call wrapper, 1 dense hidden layer of 128 units, then dropout layer
with proportion 0.5
z <- krsFit(x,y,conv=list(conv1,conv2,conv3,conv4,conv5),c(128,0.5),

classif=TRUE,nClass=10,nEpoch=10,xShape=c(28,28),scaleX=FALSE,scaleY=FALSE)

try on test set
preds <- predict(z,mntst[,-785]/255)
mean(preds == mntst[,785]) # 0.98 in my sample run

End(Not run)

lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf

Available Cases Method for Missing Data

Description

Various estimators that handle missing data via the Available Cases Method

Usage

lmac(xy,nboot=0)
makeNA(m,probna)
NAsTo0s(x)
ZerosToNAs(x,replaceVal=0)
S3 method for class 'lmac'
coef(object,...)
S3 method for class 'lmac'
vcov(object,...)
pcac(indata,scale=FALSE)
loglinac(x,margin)
tbltofakedf(tbl)

Arguments

replaceVal Value to be replaced by NA.

xy Matrix or data frame, X values in the first columns, Y in the last column.

indata Matrix or data frame.

x Matrix or data frame, one column per variable.

nboot If positive, number of bootstrap samples to take.

probna Probability that an element will be NA.

scale If TRUE, call cor instead of cov.

tbl An R table.

lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf 19

m Number of synthetic NAs to insert.

object Output from lmac.

... Needed for consistency with generic function. Not used.

margin A list of vectors specifying the model, as in loglin.

Details

The Available Cases (AC) approach applies to statistical methods that depend only on products of k
of the variables, so that cases having non-NA values for those k variables can be used, as opposed to
using only cases that are fully intact in all variables, the Complete Cases (CC) approach. In the case
of linear regression, for instance, the estimated coefficients depend only on covariances between the
variables (both predictors and response). This approach assumes thst the cases with missing values
have the same distribution as the intact cases.

The lmac function forms OLS estimates as with lm, but applying AC, in contrast to lm, which uses
the CC method.

The pcac function is an AC substitute for prcomp. The data is centered, corresponding to a fixed
value of center = TRUE in prcomp. It is also scaled if scale is TRUE, corresponding scale = TRUE
in prcomp. Due to AC, there is a small chance of negative eigenvalues, in which case stop will be
called.

The loglinac function is an AC substitute for loglin. The latter takes tables as input, but
loglinac takes the raw data. If you have just the table, use tbltofakedf to regenerate a usable
data frame.

The makeNA function is used to insert random NA values into data, for testing purposes.

Value

For lmac, an object of class lmac, with components

• coefficients, as with lm; accessible directly or by calling coef, as with lm

• fitted.values, as with lm

• residuals, as with lm

• r2, (unadjusted) R-squared

• cov, for nboot > 0 the estimated covariance matrix of the vector of estimated regression coef-
ficients; accessible directly or by calling vcov, as with lm

For pcac, an R list, with components

• sdev, as with prcomp

• rotation, as with prcomp

For loglinac, an R list, with components

• param, estimated coefficients, as in loglin

• fit, estimated expected call counts, as in loglin

20 misc

Author(s)

Norm Matloff

Examples

n <- 25000
w <- matrix(rnorm(2*n),ncol=2) # x and epsilon
x <- w[,1]
y <- x + w[,2]
insert some missing values
nmiss <- round(0.1*n)
x[sample(1:n,nmiss)] <- NA
nmiss <- round(0.2*n)
y[sample(1:n,nmiss)] <- NA
acout <- lmac(cbind(x,y))
coef(acout) # should be near pop. values 0 and 1

ltrfreqs Letter Frequencies

Description

This is data consists of capital letter frequencies obtained at http://www.math.cornell.edu/~mec/2003-
2004/cryptography/subs/frequencies.h tml

misc Utilities

Description

Various helper functions.

Usage

replicMeans(nrep,toReplic,timing=FALSE)
stdErrPred(regObj,xnew)
pythonBlankSplit(s)
stopBrowser(msg = stop("msg not supplied"))
doPCA(x,pcaProp)
PCAwithFactors(x, nComps = ncol(x))
ulist(lst)
prToFile(filename)
partTrnTst(fullData,nTest=min(1000,round(0.2*nrow(fullData))))
findOverallLoss(regests,y,lossFtn = MAPE)
getNamedArgs(argVec)
multCols(x,cols,vals)
probIncorrectClass(yhat, y, startAt1 = TRUE)
propMisclass(y,yhat)

misc 21

Arguments

regests Fitted regression estimates, training set.

y Y values, training set.

yhat Predicted Y values

startAt1 TRUE if indexing starts at 1, FALSE if starting at 0.

lossFtn Loss functin.

fullData A data frame or matrix.

nTest Number of rows for the test set.

filename Name of output file.

lst An R list.

x Matrix or data frame.

pcaProp Fraction in [0,1], specifying number of PCA components to compute, in terms
of fraction of total variance.

nComps Number of PCA components.

regObj An object of class 'lm' or similar, for which there is a vcov generic function.

xnew New X value to be predicted.

nrep Number of replications.

s A character string.

toReplic Function call(s), as a quoted string, separated by semicolons if more than one
call.

timing If TRUE, find average elapsed time over the replicates.

msg Character string, error message for existing debug browser.

argVec R list or vector with named elements.

cols A set of column numbers.

vals A set of positive expansion numbers.

Details

The function PCAwithFactors is a wrapper for stats::prcomp, to be used on data frames that
contain at least on R factor.

Value

The function PCAwithFactors returns an object of class ’PCAwithFactors’. with components
pcout, the object returned by the wrapped call to prcomp; factorsInfo, factor conversion in-
formation to be used with predict; and preds, the PCA version of x.

The function getNamedArgs will assign in the caller’s space variables with the names and values in
argVec.

Author(s)

Norm Matloff

22 mm

Examples

w <- list(a=3,b=8)
getNamedArgs(w)
a
b
u <- c(5,12,13)
names(u) <- c('x','y','z')
getNamedArgs(u)
x
y
z

mlb Major Leage Baseball player data set.

Description

Heights, weights, ages etc. of major league baseball players. A new variable has been added,
consolidating positions into Infielders, Outfielders, Catchers and Pitchers.

Included here with the permission of the UCLA Statistics Department.

mlens MovieLens User Summary Data

Description

The MovieLens dataset, https://grouplens.org/, is a standard example in the recommender
systems literature. Here we give demographic data for each user, plus the mean rating and number
of ratings. One may explore, for instance, the relation between ratings and age.

mm Method of Moments, Including Possible Regression Terms

Description

Method of Moments computation for almost any statistical problem that has derivatives with respect
to theta. Capable of handling models that include parametric regression terms, but not need be a
regression problem. (This is not Generalized Method of Moments; see the package gmm for the
latter.)

Usage

mm(m,g,x,init=rep(0.5,length(m)),eps=0.0001,maxiters=1000)

https://grouplens.org/

mm 23

Arguments

m Vector of sample moments, "left-hand sides" of moment equations.

g Function of parameter estimates, forming the "right-hand sides." This is a multivariate-
valued function, of dimensionality equal to that of m

.

init Vector of initial guesses for parameter estimates. If components are named,
these will be used as labels in the output.

eps Convergence criterion.

maxiters Maximum number of iterations.

x Input data.

Details

Standard Newton-Raphson methods are used to solve for the parameter estimates, with numericDeriv
being used to find the approximate derivatives.

Value

R list consisting of components tht, the vector of parameter estimates, and numiters, the number
of iterations performed.

Author(s)

Norm Matloff

Examples

x <- rgamma(1000,2)
m <- c(mean(x),var(x))
g <- function(x,theta) { # from theoretical properties of gamma distr.

g1 <- theta[1] / theta[2]
g2 <- theta[1] / theta[2]^2
c(g1,g2)

}
should output about 2 and 1
mm(m,g,x)

Not run:
library(mfp)
data(bodyfat)
model as a beta distribution
g <- function(x,theta) {

t1 <- theta[1]
t2 <- theta[2]
t12 <- t1 + t2
meanb <- t1 / t12
m1 <- meanb
m2 <- t1*t2 / (t12^2 * (t12+1))

24 multiclass routines

c(m1,m2)
}
x <- bodyfat$brozek/100
m <- c(mean(x),var(x))
about 4.65 and 19.89
mm(m,g,x)

End(Not run)

multiclass routines Classification with More Than 2 Classes

Description

Tools for multiclass classification, parametric and nonparametric.

Usage

avalogtrn(trnxy,yname)
ovaknntrn(trnxy,yname,k,xval=FALSE)
avalogpred()
classadjust(econdprobs,wrongprob1,trueprob1)
boundaryplot(y01,x,regests,pairs=combn(ncol(x),2),pchvals=2+y01,cex=0.5,band=0.10)

Arguments

pchvals Point size in base-R graphics.

trnxy Data matrix, Y last.

xval If TRUE, use leaving-one-out method.

y01 Y vector (1s and 0s).

regests Estimated regression function values.

x X data frame or matrix.

pairs Two-row matrix, column i of which is a pair of predictor variables to graph.

cex Symbol size for plotting.

band If band is non-NULL, only points within band, say 0.1, of est. P(Y = 1) are
displayed, for a contour-like effect.

yname Name of the Y column.

k Number of nearest neighbors.

econdprobs Estimated conditional class probabilities, given the predictors.

wrongprob1 Incorrect, data-provenanced, unconditional P(Y = 1).

trueprob1 Correct unconditional P(Y = 1).

multiclass routines 25

Details

These functions aid classification in the multiclass setting.

The function boundaryplot serves as a visualization technique, for the two-class setting. It draws
the boundary between predicted Y = 1 and predicted Y = 0 data points in 2-dimensional feature
space, as determined by the argument regests. Used to visually assess goodness of fit, typically
running this function twice, say one for glm then for kNN. If there is much discrepancy and the
analyst wishes to still use glm(), he/she may wish to add polynomial terms.

The functions not listed above are largely deprecated, e.g. in favor of qeLogit and the other qe-
series functions.

Author(s)

Norm Matloff

Examples

Not run:

data(oliveoils)
oo <- oliveoils[,-1]

toy example
set.seed(9999)
x <- runif(25)
y <- sample(0:2,25,replace=TRUE)
xd <- preprocessx(x,2,xval=FALSE)
kout <- ovaknntrn(y,xd,m=3,k=2)
kout$regest # row 2: 0.0,0.5,0.5
predict(kout,predpts=matrix(c(0.81,0.55,0.15),ncol=1)) # 0,2,0or2
yd <- factorToDummies(as.factor(y),'y',FALSE)
kNN(x,yd,c(0.81,0.55,0.15),2) # predicts 0, 1or2, 2

data(peDumms) # prog/engr data
ped <- peDumms[,-33]
ped <- as.matrix(ped)
x <- ped[,-(23:28)]
y <- ped[,23:28]
knnout <- kNN(x,y,x,25,leave1out=TRUE)
truey <- apply(y,1,which.max) - 1
mean(knnout$ypreds == truey) # about 0.37
xd <- preprocessx(x,25,xval=TRUE)
kout <- knnest(y,xd,25)
preds <- predict(kout,predpts=x)
hats <- apply(preds,1,which.max) - 1
mean(yhats == truey) # about 0.37

data(peFactors)
discard the lower educ-level cases, which are rare
edu <- peFactors$educ
numedu <- as.numeric(edu)

26 newadult

idxs <- numedu >= 12
pef <- peFactors[idxs,]
numedu <- numedu[idxs]
pef$educ <- as.factor(numedu)
pef1 <- pef[,c(1,3,5,7:9)]

ovalog
ovaout <- ovalogtrn(pef1,"occ")
preds <- predict(ovaout,predpts=pef1[,-3])
mean(preds == factorTo012etc(pef1$occ)) # about 0.39

avalog

avaout <- avalogtrn(pef1,"occ")
preds <- predict(avaout,predpts=pef1[,-3])
mean(preds == factorTo012etc(pef1$occ)) # about 0.39

knn

knnout <- ovalogtrn(pef1,"occ",25)
preds <- predict(knnout,predpts=pef1[,-3])
mean(preds == factorTo012etc(pef1$occ)) # about 0.43

data(oliveoils)
oo <- oliveoils
oo <- oo[,-1]
knnout <- ovaknntrn(oo,'Region',10)
predict a new case that is like oo1[1,] but with palmitic = 950
newx <- oo[1,2:9,drop=FALSE]
newx[,1] <- 950
predict(knnout,predpts=newx) # predicts class 2, South

End(Not run)

newadult UCI adult income data set, adapted

Description

This data set is adapted from the Adult data from the UCI Machine Learning Repository, which was
in turn adapted from Census data on adult incomes and other demographic variables. The UCI data
is used here with permission from Ronny Kohavi.

The variables are:

• gt50, which converts the original >50K variable to an indicator variable; 1 for income greater
than $50,000, else 0

• edu, which converts a set of education levels to approximate number of years of schooling

nlshc 27

• age

• gender, 1 for male, 0 for female

• mar, 1 for married, 0 for single

Note that the education variable is now numeric.

nlshc Heteroscedastic Nonlinear Regression

Description

Extension of nls to the heteroscedastic case.

Usage

nlshc(nlsout,type='HC')

Arguments

nlsout Object of type ’nls’.

type Eickert-White algorithm to use. See documentation for nls.

Details

Calls nls but then forms a different estimated covariance matrix for the estimated regression co-
efficients, applying the Eickert-White technique to handle heteroscedasticity. This then gives valid
statistical inference in that setting.

Some users may prefer to use nlsLM of the package minpack.lm instead of nls. This is fine, as
both functions return objects of class ’nls’.

Value

Estimated covariance matrix

Author(s)

Norm Matloff

References

Zeileis A (2006), Object-Oriented Computation of Sandwich Estimators. Journal of Statistical
Software, 16(9), 1–16, https://www.jstatsoft.org/v16/i09/.

https://www.jstatsoft.org/v16/i09/

28 Penrose Linear

Examples

simulate data from a setting in which mean Y is
1 / (b1 * X1 + b2 * X2)
n <- 250
b <- 1:2
x <- matrix(rexp(2*n),ncol=2)
meany <- 1 / (x %*% b) # reg ftn
y <- meany + (runif(n) - 0.5) * meany # heterosced epsilon
xy <- cbind(x,y)
xy <- data.frame(xy)
see nls() docs
nlout <- nls(X3 ~ 1 / (b1*X1+b2*X2),

data=xy,start=list(b1 = 1,b2=1))
nlshc(nlout)

oliveoils Italian olive oils data set.

Description

Italian olive oils data set, as used in Graphics of Large Datasets: Visualizing a Million, by Antony
Unwin, Martin Theus and Heike Hofmann, Springer, 2006. Included here with permission of Dr.
Martin Theus.

Penrose Linear Penrose-Inverse Linear Models and Polynomial Regression

Description

Provides mininum-norm solutions to linear models, identical to OLS in standard situations, but
allowing exploration of overfitting in the overparameterized case. Also provides a wrapper for the
polynomial case.

Usage

penroseLM(d,yName)
penrosePoly(d,yName,deg,maxInteractDeg=deg)
ridgePoly(d,yName,deg,maxInteractDeg=deg)
S3 method for class 'penroseLM'
predict(object,...)
S3 method for class 'penrosePoly'
predict(object,...)

phoneme 29

Arguments

... Arguments for the predict functions.

d Dataframe, training set.

yName Name of the class labels column.

deg Polynomial degree.

maxInteractDeg Maximum degree of interaction terms.

object A value returned by penroseLM or penrosePoly.

Details

First, provides a convenient wrapper to the polyreg package for polynomial regression. (See qePoly
here for an even higher-level wrapper.) Note that this computes true polynomials, with cross-
product/interaction terms rather than just powers, and that dummy variables are handled properly
(to NOT compute powers).

Second, provides a tool for exploring the "double descent" phenomenon, in which prediction error
may improve upon fitting past the interpolation point.

Author(s)

Norm Matloff

phoneme Phoneme Data

Description

Phoneme detection, 2 types. Features are from harmonic analysis of th voice. From OpenML,
https://www.openml.org/d/1489.

prgeng Silicon Valley programmers and engineers data

Description

This data set is adapted from the 2000 Census (5% sample, person records). It is mainly restricted
to programmers and engineers in the Silicon Valley area. (Apparently due to errors, there are some
from other ZIP codes.)

There are three versions:

• prgeng, the original data, with categorical variables, e.g. Occupation, in their original codes

• peDumms, same but with categorical variables converted to dummies; due to the large number
of levels the birth and PUMA data is not included

https://www.openml.org/d/1489

30 quizDocs

• peFactors, same but with categorical variables converted to factors

• pef, same as peFactors, but having only columns for age, education, occupation, gender,
wage income and weeks worked. The education column has been collapsed to Master’s de-
gree, PhD and other.

The variable codes, e.g. occupational codes, are available from https://usa.ipums.org/usa/
volii/occ2000.shtml. (Short code lists are given in the record layout, but longer ones are in the
appendix Code Lists.)

The variables are:

• age, with a U(0,1) variate added for jitter

• cit, citizenship; 1-4 code various categories of citizens; 5 means noncitizen (including per-
manent residents)

• educ: 01-09 code no college; 10-12 means some college; 13 is a bachelor’s degree, 14 a
master’s, 15 a professional degree and 16 is a doctorate

• occ, occupation

• birth, place of birth

• wageinc, wage income

• wkswrkd, number of weeks worked

• yrentry, year of entry to the U.S. (0 for natives)

• powpuma, location of work

• gender, 1 for male, 2 for female

Usage

data(prgeng)
data(peDumms)
data(peFactors)

quizDocs Course quiz documents

Description

This data is suitable for NLP analysis. It consists of all the quizzes I’ve given in undergraduate
courses, 143 quizzes in all.

It is available in two forms. First, quizzes is a data.frame, 143 rows and 2 columns. Row i consists
of a single character vector comprising the entire quiz i, followed by the course name (as an R
factor). The second form is an R list, 143 elements. Each list element is a character vector, one
vector element per line of the quiz.

The original documents were LaTeX files. They have been run through the detex utility to remove
most LaTeX commands, as well as removing the LaTeX preambles separately.

The names of the list elements are the course names, as follows:

https://usa.ipums.org/usa/volii/occ2000.shtml
https://usa.ipums.org/usa/volii/occ2000.shtml

ridgelm,plot.rlm 31

ECS 50: a course in machine organization

ECS 132: an undergraduate course in probabilistic modeling

ECS 145: a course in scripting languages (Python, R)

ECS 158: an undergraduate course in parallel computation

ECS 256: a graduate course in probabilistic modeling

ridgelm,plot.rlm Ridge Regression

Description

Similar to lm.ridge in MASS packaged included with R, but with a different kind of scaling and a
little nicer plotting.

Usage

ridgelm(xy,lambda = seq(0.01,1,0.01),mapback=TRUE)
S3 method for class 'rlm'
plot(x,y,...)

Arguments

xy Data, response variable in the last column.
lambda Vector of desired values for the ridge parameter.
mapback If TRUE, the scaling that had been applied to the original data will be map back

to the original scale, so that the estimated regression coefficients are now on the
scale of the original data.

x Object of type ’rlm’, output of ridgelm.
y Needed for consistency with the generic. Not used.
... Needed for consistency with the generic. Not used.

Details

Centers and scales the predictors X, and centers the response variable Y. Computes X’X and then
solves [(X’X)/n + lambda I]b = X’Y/n for b. The 1/n factors are important, making the diagonal
elements of (X’X)/n all 1s and thus facilitating choices for the lambdas in a manner independent of
the data.

Calling plot on the output of ridgelm dispatches to plot.rlm, thus diplaying the ridge traces.

Value

The function ridgelm returns an object of class ’rlm’, with components bhats, the estimated beta
vectors, one column per lambda value, and lambda, a copy of the input.

Author(s)

Norm Matloff

32 textToXY,textToXYpred

SwissRoll Swiss Roll

Description

See http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html for this version of
Swiss Roll.

Running data(SwissRoll) produces an object sw.

textToXY,textToXYpred Tools for Text Classification

Description

"R-style," classification-oriented wrappers for the text2vec package.

Usage

textToXY(docs,labels,kTop=50,stopWords='a')
textToXYpred(ttXYout,predDocs)

Arguments

docs Character vector, one element per document.

predDocs Character vector, one element per document.

labels Class labels, as numeric, character or factor. NULL is used at the prediction
stage.

kTop The number of most-frequent words to retain; 0 means retain all.

stopWords Character vector of common words, e.g. prepositions to delete. Recommended
is tm::stopwords('english').

ttXYout Output object from textToXY.

Details

A typical classification/machine learning package will have as arguments a feature matrix X and
a labels vector/factor Y. For a "bag of words" analysis in the text case, each row of X would be a
document and each column a word.

The functions here are basically wrappers for generating X. Wrappers are convenient in that:

• The text2vec package is rather arcane, so a "R-style" wrapper would be useful.

• The text2vec are not directly set up to do classification, so the functions here provide the
"glue" to do that.

http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html

TStoX 33

The typical usage pattern is thus:

• Run the documents vector and labels vector/factor through textToXY, generating X and Y.

• Apply your favorite classification/machine learning package p to X and Y, returning o.

• When predicting a new document d, run o and d through textToXY, producing x.

• Run x on p’s predict function.

Value

The function textToXY returns an R list with components x and y for X and Y, and a copy of the
input stopWords.

The function textToXY returns X.

Author(s)

Norm Matloff

TStoX Transform Time Series to Rectangular Form

Description

Input a time series and transform it to a form suitable for prediction using lm etc.

Usage

TStoX(x,lg)
TStoXmv(xmat,lg,y)

Arguments

x A vector.

lg Lag, a positive integer.

xmat A matrix, data frame etc., a multivariate time series. Each column is a time
series, over a common time period.

y A time series, again on that common time period. If NULL in TStoXmv, then y
is set to x (i.e. for a univariate time series in which older values predict newer
ones).

Details

Similar to stats::embed, but in lagged form, with applications such as lm in mind.

TStoX is for transforming vectors, while TStoXmv handles the multivariate time series case. Intended
for use with lm or other regression/machine learning model, predicting y[i] from observations
i-lg, i-lg+1,...,i-1.

34 unscale

Value

As noted, the idea is to set up something like lm(Y ~ X). Let m denote length of x, and in the matrix
input case, the number of rows in xmat. Let p be 1 in the vector case, ncol(xmat) in the matrix
case. The return value is a matrix with m-lg rows. There will be p*lg+1 columns, with "Y," the
numbers to be predicted in the last column.

In the output in the multivariate case, let k denote ncol(xmat). Then the first k columns of the
output will be the k series at lag lg, the second k columns will be the k series at lag lg-1, ..., and
the lg-th set of k columns will be the k series at lag 1,

Author(s)

Norm Matloff

Examples

x1 <- c(5,12,13,8,88,6)
x2 <- c(5,4,3,18,168,0)
y <- 1:6
xmat <- cbind(x1,x2)

TStoX(x1,2)
[,1] [,2] [,3]
[1,] 5 12 13
[2,] 12 13 8
[3,] 13 8 88
[4,] 8 88 6

xy <- TStoXmv(xmat,2,y)
xy
[,1] [,2] [,3] [,4] [,5]
[1,] 5 5 12 4 3
[2,] 12 4 13 3 4
[3,] 13 3 8 18 5
[4,] 8 18 88 168 6

lm(xy[,5] ~ xy[,-5])
Coefficients:
(Intercept) xy[, -5]1 xy[, -5]2 xy[, -5]3 xy[, -5]4
-65.6 3.2 18.2 -3.2 NA
need n > 7 here for useful lm() call, but this illustrates the idea

unscale Miscellaneous Utilities

Description

Utilities.

unscale 35

Usage

unscale(scaledx,ctrs=NULL,sds=NULL)
mmscale(m,scalePars=NULL,p=NULL)
catDFRow(dfRow)
constCols(d)
allNumeric(lst)

Arguments

scaledx A matrix.

m A matrix.

ctrs Take the original means to be ctrs

lst An R list.

sds Take the original standard deviations to be sds

dfRow A row in a data frame.

d A data frame or matrix.

scalePars If not NULL, a 2-row matrix, with column i storing the min and max values to
be used in scaling column i of m. Typically, one has previously called mmscale
on a dataset and saved the resulting scale parameters, and we wish to use those
same scale parameters on new data.

p If m is a vector, this specifies the number of columns it should have as a matrix.
The code will try to take care of this by itself if p is left at NULL.

Details

The function mmscale is meant as a better-behaved alternative to scale. Using minimum and
maximum values, it maps variables to [0,1], thus avoiding the problems arising from very small
standard deviations in scale.

The function catDFRow nicely prints a row of a data frame.

The function constCols determines which columns of a data frame or matrix are constant, if any.

Value

The function unscale returns the original object to which scale had been applied. Or, the attributes
ctrs and sds can be specified by the user.

Author(s)

Norm Matloff

36 xyzPlot

weatherTS Weather Time Series

Description

Various measurements on weather variables collected by NASA. Downloaded via nasapower; see
that package for documentation.

xyzPlot Misc. Graphics

Description

Graphics utiliites.

Usage

xyzPlot(xyz,clrs=NULL,cexText=1.0,xlim=NULL,ylim=NULL,
xlab=NULL,ylab=NULL,legendPos=NULL,plotType='l')

Arguments

xyz A matrix or data frame of at least 3 columns, the first 3 serving as ’x’, ’y’ and
’z’ coordinates of points to be plotted. Grouping, if any, is specified in column
4, in which case xyz must be a data frame.

clrs Colors to be used in the grouped case.

cexText Text size, proportional to standard.

xlim As in plot.

ylim As in plot.

xlab As in plot.

ylab As in plot.

legendPos As in legend.

plotType Coded ’l’ for lines, ’p’ for points.

Details

A way to display 3-dimensional data in 2 dimensions. For each plotted point (x,y), a z value is
written in text over the point. A grouping variable is also allowed, with different colors used to plot
different groups.

A group (including the entire data in the case of one group) can be displayed either as a polygonal
line, or just as a point cloud. The user should experiment with different argument settings to get the
most visually impactful plot.

yell10k 37

Author(s)

Norm Matloff

Examples

Not run:

xyzPlot(mtcars[,c(3,6,1)],plotType='l',cexText=0.75)
xyzPlot(mtcars[,c(3,6,1)],plotType='p',cexText=0.75)
xyzPlot(mtcars[,c(3,6,1)],plotType='l',cexText=0.75)
xyzPlot(mtcars[,c(3,6,1,2)],clrs=c('red','darkgreen','blue'),plotType='l',cexText=0.75)

End(Not run)

yell10k New York Taxi Data

Description

From public data on New York City taxi trips.

Index

allNumeric (unscale), 34
avalogpred (multiclass routines), 24
avalogtrn (multiclass routines), 24

bestKperPoint
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

boundaryplot (multiclass routines), 24

catDFRow (unscale), 34
charsToFactors (factorsToDummies), 5
classadjust (multiclass routines), 24
coef.lmac

(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

confusion (multiclass routines), 24
constCols (unscale), 34
courseRecords, 4
currency, 4

day (day,day1), 5
day,day1, 5
day1 (day,day1), 5
day2 (day,day1), 5
diagNeural (krsFit), 16
discretize (factorsToDummies), 5
doPCA (misc), 20
dummiesToFactor (factorsToDummies), 5
dummiesToInt (factorsToDummies), 5

english, 5
exploreExpVars

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

factorsToDummies, 5
factorTo012ec (multiclass routines), 24
factorTo012etc (factorsToDummies), 5
factorToDummies (factorsToDummies), 5
falldetection, 8
findOverallLoss (misc), 20

fineTuning (fineTuning,knnFineTune), 8
fineTuning,knnFineTune, 8
fineTuningPar (fineTuning,knnFineTune),

8

getDFclasses (factorsToDummies), 5
getNamedArgs (misc), 20

hasCharacters (factorsToDummies), 5
hasFactors (factorsToDummies), 5

kmin
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

kNN
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

kNNallK
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

knnest
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint,
11

knnFineTune (fineTuning,knnFineTune), 8
knntrn

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

kNNxv
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

krsFit, 16
krsFitImg (krsFit), 16

l1
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

l2
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

38

INDEX 39

lmac
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf,
18

loclin
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

loclogit
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

loglinac
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

ltrfreqs, 20

makeNA
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

MAPE
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

meany
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

mediany
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

misc, 20
mlb, 22
mlens, 22
mm, 22
mmscale (unscale), 34
multCols (misc), 20
multiclass routines, 24

NAsTo0s
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

newAdult (newadult), 26
newadult, 26
nlshc, 27
nonparvarplot

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

nonparvsxplot
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

oliveoils, 28
ovaknntrn (multiclass routines), 24
ovalogpred (multiclass routines), 24
ovalogtrn (multiclass routines), 24

partTrnTst (misc), 20
parvsnonparplot

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

pcac
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

PCAwithFactors (misc), 20
peDumms (prgeng), 29
pef (prgeng), 29
peFactors (prgeng), 29
Penrose Linear, 28
penroseLM (Penrose Linear), 28
penrosePoly (Penrose Linear), 28
phoneme, 29
plot.rlm (ridgelm,plot.rlm), 31
plot.tuner (fineTuning,knnFineTune), 8
plotExpVars

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

predict.knn
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

predict.krsFit (krsFit), 16
predict.ovaknn (multiclass routines), 24
predict.penroseLM (Penrose Linear), 28
predict.penrosePoly (Penrose Linear), 28
preprocessx

(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

prgeng, 29
probIncorrectClass (misc), 20
propMisclass (misc), 20
prToFile (misc), 20
pythonBlankSplit (misc), 20

quizDocs, 30
quizzes (quizDocs), 30

regtools (regtools-package), 3
regtools-package, 3
replicMeans (misc), 20
ridgelm (ridgelm,plot.rlm), 31
ridgelm,plot.rlm, 31

40 INDEX

ridgePoly (Penrose Linear), 28

stdErrPred (misc), 20
stopBrowser (misc), 20
sw (SwissRoll), 32
SwissRoll, 32

tbltofakedf
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

textToXY (textToXY,textToXYpred), 32
textToXY,textToXYpred, 32
textToXYpred (textToXY,textToXYpred), 32
toAllNumeric (factorsToDummies), 5
toSubFactor (factorsToDummies), 5
toSuperFactor (factorsToDummies), 5
TStoX, 33
TStoXmv (TStoX), 33

ulist (misc), 20
unscale, 34

vary
(knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint),
11

vcov.lmac
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

weatherTS, 36

xyDataframeToMatrix (factorsToDummies),
5

xyzPlot, 36

yell10k, 37

ZerosToNAs
(lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf),
18

	regtools-package
	courseRecords
	currency
	day,day1
	english
	factorsToDummies
	falldetection
	fineTuning,knnFineTune
	knnest,meany,vary,loclin,predict.knn,preprocessx,kmin,parvsnonparplot,nonparvsxplot,l1,l2,kNN,bestKperPoint
	krsFit
	lmac,makeNA,coef.lmac,vcov.lmac,pcac,loglinac,tbltofakedf
	ltrfreqs
	misc
	mlb
	mlens
	mm
	multiclass routines
	newadult
	nlshc
	oliveoils
	Penrose Linear
	phoneme
	prgeng
	quizDocs
	ridgelm,plot.rlm
	SwissRoll
	textToXY,textToXYpred
	TStoX
	unscale
	weatherTS
	xyzPlot
	yell10k
	Index

