
Package ‘readsparse’
July 23, 2025

Type Package

Title Read and Write Sparse Matrices in 'SVMLight' and 'LibSVM'
Formats

Version 0.1.5-8

Maintainer David Cortes <david.cortes.rivera@gmail.com>

URL https://github.com/david-cortes/readsparse

BugReports https://github.com/david-cortes/readsparse/issues

Description Read and write labelled sparse matrices in text format as used by
software such as 'SVMLight', 'LibSVM', 'ThunderSVM', 'LibFM', 'xLearn', 'XGBoost', 'Light-
GBM',
and others. Supports labelled data for regression, classification (binary, multi-class, multi-label),
and ranking (with 'qid' field), and can handle header metadata and comments in files.

License BSD_2_clause + file LICENSE

Imports Rcpp (>= 1.0.5), Matrix, methods

Suggests MatrixExtra, testthat

LinkingTo Rcpp

RoxygenNote 7.3.2

NeedsCompilation yes

Author David Cortes [aut, cre, cph]

Repository CRAN

Date/Publication 2025-02-17 18:50:02 UTC

Contents
read.sparse . 2
write.sparse . 6

Index 9

1

https://github.com/david-cortes/readsparse
https://github.com/david-cortes/readsparse/issues

2 read.sparse

read.sparse Read Sparse Matrix from Text File

Description

Read a labelled sparse CSR matrix in text format as used by libraries such as SVMLight, LibSVM,
ThunderSVM, LibFM, xLearn, XGBoost, LightGBM, and more.

The format is as follows:

<label(s)> <column>:<value> <column>:<value> ...

with one line per observation/row.

Example line (row):

1 1:1.234 3:20

This line denotes a row with label (target variable) equal to 1, a value for the first column of 1.234,
a value of zero for the second column (which is missing), and a value of 20 for the third column.

The labels might be decimal (for regression), and each row might contain more than one label (must
be integers in this case), separated by commas without spaces inbetween - e.g.:

1,5,10 1:1.234 3:20

This line indicates a row with labels 1, 5, and 10 (for multi-class classification). If the line has no
labels, it should still include a space before the features.

The rows might additionally contain a ‘qid‘ parameter as used in ranking algorithms, which should
always lay inbetween the labels and the features and must be an integer - e.g.:

1 qid:2 1:1.234 3:20

The file might optionally contain a header as the first line with metadata (number of rows, number
of columns, number of classes). Presence of a header will be automatically detected, and is recom-
mended to include it for speed purposes. Datasets from the extreme classification repository (see
references) usually include such a header.

Lines might include comments, which start after a ‘#‘ character. Lines consisting of only a ‘#‘ will
be ignored. When reading from a file, such file might have a BOM (information about encoding
uses in Windows sytems), which will be automatically skipped.

Usage

read.sparse(
file,
multilabel = FALSE,
has_qid = FALSE,
integer_labels = FALSE,
index1 = TRUE,
sort_indices = TRUE,
ignore_zeros = TRUE,
min_cols = 0L,
min_classes = 0L,

read.sparse 3

limit_nrows = 0L,
use_altrep = TRUE,
from_string = FALSE

)

Arguments

file Either a file path from which the data will be read, or a string (‘character‘ vari-
able) containing the text from which the data will be read. In the latter case,
must pass ‘from_string=TRUE‘.

multilabel Whether the input file can have multiple labels per observation. If passing ‘mul-
tilabel=FALSE‘ and it turns out to have multiple labels, will only take the first
one for each row. If the labels are non-integers or have decimal point, the results
will be invalid.

has_qid Whether the input file has ‘qid‘ field (used for ranking). If passing ‘FALSE‘
and the file does turns out to have ‘qid‘, the features will not be read for any
observations.

integer_labels Whether to output the observation labels as integers.

index1 Whether the input file uses numeration starting at 1 for the column numbers (and
for the label numbers when passing ‘multilabel=TRUE‘). This is usually the
case for files downloaded from the repositories in the references. The function
will check for whether any of the column indices is zero, and will ignore this
option if so (i.e. will assume it is ‘FALSE‘).

sort_indices Whether to sort the indices of the columns after reading the data. These should
already be sorted in the files from the repositories in the references.

ignore_zeros Whether to avoid adding features which have a value of zero. If the zeros are
caused due to numerical rounding in the software that wrote the input file, they
can be post-processed by passing ‘ignore_zeros=FALSE‘ and then something
like ‘X@x[X@x == 0] = 1e-8‘.

min_cols Minimum number of columns that the output ‘X‘ object should have, in case
some columns are all missing in the input data.

min_classes Minimum number of columns that the output ‘y‘ object should have, in case
some columns are all missing in the input data. Only used when passing ‘multi-
label=TRUE‘.

limit_nrows Maximum number of rows to read from the data. If there are more than this
number of rows, it will only read the first ’limit_nrows’ rows. If passing zero
(the default), there will be no row limit.

use_altrep Whether to use R’s ALTREP system to return C++ vector objects without gen-
erating extra data copies. If passing ‘FALSE‘, each piece of data will be copied
into a an R-allocated vector and returned as such.
Passing ‘TRUE‘ is faster and uses less memory (as there are no redundant
data copies), but these ALTREP’d objects can potentially result in some func-
tions/methods running slower on them than on R objects (for example, manually
sub-setting the vectors in the S4 Matrix classes that are returned can potentially
be slower by some microseconds).

4 read.sparse

from_string Whether to read the data from a string variable instead of a file. If passing
‘from_string=TRUE‘, then ‘file‘ is assumed to be a variable with the data con-
tents on it.

Details

Note that this function:

• Will not make any checks for negative column indices.

• Has a precision of C type ‘int‘ for column indices and integer labels (the maximum value that
this type can hold can be checked in ‘.Machine$integer.max‘).

• Will fill missing labels with NAs when passing ‘multilabel=FALSE‘.

• Will fill with zeros (empty values) the lines that are empty (that is, they generate a row in the
data), but will ignore (that is, will not generate a row in the data) the lines that start with ‘#‘.

Be aware that the data is represented as a CSR matrix with index pointer of class C ‘int‘, thus the
number of rows/columns/non-zero-elements cannot exceed ‘.Machine$integer.max‘.

On 64-bit Windows systems, if compiling the library with a compiler other than MinGW or MSVC,
it will not be able to read files larger than 2GB. This should not be a concern if installing it from
CRAN or from R itself, as the Windows version at the time of writing can only be compiled with
MinGW.

If the file contains a header, and this header denotes a larger number of columns or of labels than
the largest index in the data, the resulting object will have this dimension set according to the
header. The third entry in the header (number of classes/labels) will be ignored when passing
‘multilabel=FALSE‘.

The function uses different code paths when reading from a file or from a string, and there might be
slight differences between the obtained results from them. For example, reading from a file might
produce the desired output if the file uses tabs as separators instead of spaces (not supported by most
other software and not standard), whereas reading from a string will not. If any such difference is
encountered, please submit a bug report in the package’s GitHub page.

Value

A list with the following entries:

• ‘X‘: the features, as a CSR Matrix from package ‘Matrix‘ (class ‘dgRMatrix‘).

• ‘y‘: the labels. If passing ‘multilabel=FALSE‘ (the default), will be a vector (class ‘numeric‘
when passing ‘integer_labels=FALSE‘, class ‘integer‘ when passing ‘integer_labels=TRUE‘),
otherwise will be a binary CSR Matrix (class ‘ngRMatrix‘).

• ‘qid‘: the query IDs used for ranking, as an integer vector. This entry will only be present
when passing ‘has_qid=TRUE‘.

These can be easily transformed to other sparse matrix types through e.g. ‘X <- as(X, "CsparseMa-
trix")‘.

read.sparse 5

References

Datasets in this format can be found here:

• LibSVM Data: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

• Extreme Classification Repository: http://manikvarma.org/downloads/XC/XMLRepository.
html

The format is also described at the SVMLight webpage: http://svmlight.joachims.org.

See Also

write.sparse

Examples

Not run:
library(Matrix)
library(readsparse)

Example input file
"1 2:1.21 5:2.05
-1 1:0.45 3:0.001 4:-10" -> coded.matrix

r <- read.sparse(coded.matrix, from_string=TRUE)
print(r)

Convert it back to text
recoded.matrix <- write.sparse(file=NULL, X=r$X, y=r$y, to_string=TRUE)
cat(recoded.matrix)

Example with real file I/O
generate a random sparse matrix and labels
set.seed(1)
X <- rsparsematrix(nrow=5, ncol=10, nnz=8)
y <- rnorm(5)

save into a text file
temp_file <- file.path(tempdir(), "matrix.txt")
write.sparse(temp_file, X, y, integer_labels=FALSE)

inspect the text file
cat(paste(readLines(temp_file), collapse="\n"))

read it back
r <- read.sparse(temp_file)
print(r)

(Note that columns with all-zeros are discarded,
this behavior can be avoided with 'add_header=TRUE')

End(Not run)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://svmlight.joachims.org

6 write.sparse

write.sparse Write Sparse Matrix in Text Format

Description

Write a labelled sparse matrix into text format as used by software such as SVMLight, LibSVM,
ThunderSVM, LibFM, xLearn, XGBoost, LightGBM, and others - i.e.:

<labels(s)> <column:value> <column:value> ...

For more information about the format and usage examples, see read.sparse.

Can write labels for regression, classification (binary, multi-class, and multi-label), and ranking
(with ‘qid‘), but note that most software that makes use of this data format supports only regression
and binary classification.

Usage

write.sparse(
file,
X,
y,
qid = NULL,
integer_labels = TRUE,
index1 = TRUE,
sort_indices = TRUE,
ignore_zeros = TRUE,
add_header = FALSE,
decimal_places = 8L,
append = FALSE,
to_string = FALSE

)

Arguments

file Output file path into which to write the data. Will be ignored when passing
‘to_string=TRUE‘.

X Sparse data to write. Can be a sparse matrix from package ‘Matrix‘ (classes:
‘dgRMatrix‘, ‘dgTMatrix‘, ‘dgCMatrix‘, ‘ngRMatrix‘, ‘ngTMatrix‘, ‘ngCMa-
trix‘) or from package ‘SparseM‘ (classes: ‘matrix.csr‘, ‘matrix.coo‘, ‘matrix.csc‘),
or a dense matrix of all numeric values, passed either as a ‘matrix‘ or as a
‘data.frame‘.
If ‘X‘ is a vector (classes ‘numeric‘, ‘integer‘, ‘dsparseVector‘), will be assumed
to be a row vector and will thus write one row only.
Note that the data will be casted to ‘dgRMatrix‘ in any case.

y Labels for the data. Can be passed as a vector (‘integer‘ or ‘numeric‘) if each
observation has one label, or as a sparse or dense matrix (same format as ‘X‘)
if each observation can have more than 1 label. In the latter case, only the non-
missing column indices will be written, while the values are ignored.

write.sparse 7

qid Secondary label information used for ranking algorithms. Must be an integer
vector if passed. Note that not all software supports this.

integer_labels Whether to write the labels as integers. If passing ‘FALSE‘, they will have
a decimal point regardless of whether they are integers or not. If the file is
meant to be used for a classification algorithm, one should pass ‘TRUE‘ here
(the default). For multilabel classification, the labels will always be written as
integers.

index1 Whether the column and label indices (if multi-label) should have numeration
starting at 1. Most software assumes this is ‘TRUE‘.

sort_indices Whether to sort the indices of ‘X‘ (and of ‘y‘ if multi-label) before writing the
data. Note that this will cause in-place modifications if either ‘X‘ or ‘y‘ are
passed as CSR matrices from the ‘Matrix‘ package.

ignore_zeros Whether to ignore (not write) features with a value of zero after rounding to the
specified decimal places.

add_header Whether to add a header with metadata as the first line (number of rows, number
of columns, number of classes). If passing ‘integer_label=FALSE‘ and ‘y‘ is a
vector, will write zero as the number of labels. This is not supported by most
software.

decimal_places Number of decimal places to use for numeric values. All values will have exactly
this number of places after the decimal point. Be aware that values are rounded
and might turn to zeros (will be skipped by default) if they are too small (one can
do something like ‘X@x <- ifelse(X@x >= 0, pmin(X@x, 1e-8), pmax(X@x,
-1e-8))‘ to avoid this).

append Whether to append text at the end of the file instead of overwriting or creating a
new file. Ignored when passing ‘to_string=TRUE‘.

to_string Whether to write the result into a string (which will be returned from the func-
tion) instead of into a file.

Details

Be aware that writing sparse matrices to text is not a lossless operation - that is, some information
might be lost due to numeric precision, and metadata such as row and column names will not be
saved. It is recommended to use ‘saveRDS‘ or similar for saving data between R sessions, or to use
binary formats for passing between different software such as R->Python.

The option ‘ignore_zeros‘ is implemented heuristically, by comparing ‘abs(x) >= 10^(-decimal_places)/2‘,
which might not match exactly with the rounding that is done implicitly in string conversions in the
libc/libc++ functions - thus there might still be some corner cases of all-zeros written into features
if the (absolute) values are very close to the rounding threshold.

While R uses C ‘double‘ type for numeric values, most of the software that is able to take input data
in this format uses ‘float‘ type, which has less precision.

The function uses different code paths when writing to a file or to a string, and there might be slight
differences between the generated texts from them. If any such difference is encountered, please
submit a bug report in the package’s GitHub page.

8 write.sparse

Value

If passing ‘to_string=FALSE‘ (the default), will not return anything (‘invisible(NULL)‘). If passing
‘to_string=TRUE‘, will return a ‘character‘ variable with the data contents written into it.

See Also

read.sparse

Index

read.sparse, 2, 6, 8

write.sparse, 5, 6

9

	read.sparse
	write.sparse
	Index

