
Package ‘projpred’
July 23, 2025

Encoding UTF-8

Title Projection Predictive Feature Selection

Version 2.9.0

Date 2025-07-08

Description Performs projection predictive feature selection for generalized linear
models (Piironen, Paasiniemi, and Vehtari, 2020, <doi:10.1214/20-EJS1711>)
with or without multilevel or additive terms (Catalina, Bürkner, and
Vehtari, 2022, <https://proceedings.mlr.press/v151/catalina22a.html>), for
some ordinal and nominal regression models (Weber, Glass, and Vehtari, 2025,
<doi:10.1007/s00180-024-01506-0>), and for many other regression models
(using the latent projection by Catalina, Bürkner, and Vehtari, 2021,
<doi:10.48550/arXiv.2109.04702>, which can also be applied to most of the
former models). The package is compatible with the 'rstanarm' and 'brms'
packages, but other reference models can also be used. See the vignettes and
the documentation for more information and examples.

License GPL-3 | file LICENSE

URL https://mc-stan.org/projpred/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/projpred/issues/

Depends R (>= 3.6.0)

Imports methods, utils, Rcpp, gtools, ggplot2, scales, rstantools (>=
2.0.0), loo (>= 2.0.0), lme4 (>= 1.1-28), mvtnorm, mgcv, gamm4,
abind, MASS, ordinal, nnet, mclogit

Suggests ggrepel, rstanarm, brms, nlme, optimx, ucminf, parallel,
foreach, iterators, doRNG, unix, testthat, vdiffr, knitr,
rmarkdown, glmnet, cmdstanr, rlang, bayesplot (>= 1.5.0),
posterior, doParallel, future, future.callr, doFuture,
progressr

LinkingTo Rcpp, RcppArmadillo

Additional_repositories https://stan-dev.r-universe.dev/

LazyData TRUE

RoxygenNote 7.3.2

1

https://doi.org/10.1214/20-EJS1711
https://proceedings.mlr.press/v151/catalina22a.html
https://doi.org/10.1007/s00180-024-01506-0
https://doi.org/10.48550/arXiv.2109.04702
https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/
https://stan-dev.r-universe.dev/

2 Contents

VignetteBuilder knitr, rmarkdown

NeedsCompilation yes

Author Juho Piironen [aut],
Markus Paasiniemi [aut],
Alejandro Catalina [aut],
Frank Weber [aut],
Osvaldo Martin [cre, aut],
Aki Vehtari [aut],
Jonah Gabry [ctb],
Marco Colombo [ctb],
Paul-Christian Bürkner [ctb],
Hamada S. Badr [ctb],
Brian Sullivan [ctb],
Sölvi Rögnvaldsson [ctb],
The LME4 Authors [cph] (see file 'LICENSE' for details),
Yann McLatchie [ctb],
Juho Timonen [ctb]

Maintainer Osvaldo Martin <aloctavodia@gmail.com>

Repository CRAN

Date/Publication 2025-07-08 22:00:02 UTC

Contents
projpred-package . 3
as.matrix.projection . 7
as_draws_matrix.projection . 9
augdat_ilink_binom . 11
augdat_link_binom . 11
break_up_matrix_term . 12
cl_agg . 12
cv-indices . 13
cv_proportions . 15
cv_varsel . 16
df_binom . 23
df_gaussian . 23
extend_family . 24
extra-families . 28
force_search_terms . 29
mesquite . 30
performances . 31
plot.cv_proportions . 32
plot.vsel . 33
pred-projection . 39
predict.refmodel . 43
predictor_terms . 45
print.projection . 46

projpred-package 3

print.refmodel . 46
print.vsel . 47
print.vselsummary . 47
project . 48
ranking . 51
refmodel-init-get . 52
run_cvfun . 59
solution_terms . 61
suggest_size . 62
summary.vsel . 65
varsel . 68
y_wobs_offs . 73

Index 75

projpred-package Projection predictive feature selection

Description

The R package projpred performs the projection predictive variable (or "feature") selection for var-
ious regression models. We recommend to read the README file (available with enhanced formatting
online) and the main vignette (topic = "projpred", but also available online) before continuing
here.

Terminology

Throughout the whole package documentation, we use the term "submodel" for all kinds of candi-
date models onto which the reference model is projected. For custom reference models, the can-
didate models don’t need to be actual submodels of the reference model, but in any case (even for
custom reference models), the candidate models are always actual submodels of the full formula
used by the search procedure. In this regard, it is correct to speak of submodels, even in case of a
custom reference model.

The following model type abbreviations will be used at multiple places throughout the documen-
tation: GLM (generalized linear model), GLMM (generalized linear multilevel—or "mixed"—
model), GAM (generalized additive model), and GAMM (generalized additive multilevel—or "mixed"—
model). Note that the term "generalized" includes the Gaussian family as well.

Draw-wise divergence minimizers

For the projection of the reference model onto a submodel, projpred currently relies on the follow-
ing functions as draw-wise divergence minimizers (in other words, these are the workhorse func-
tions employed by projpred’s internal default div_minimizer functions, see init_refmodel()):

• Submodel without multilevel or additive terms:

https://mc-stan.org/projpred/
https://mc-stan.org/projpred/articles/projpred.html

4 projpred-package

– For the traditional (or latent) projection (or the augmented-data projection in case of
the binomial() or brms::bernoulli() family): An internal C++ function which ba-
sically serves the same purpose as lm() for the gaussian() family and glm() for all
other families. The returned object inherits from class subfit. Possible tuning param-
eters for this internal C++ function are: regul (amount of ridge regularization; default:
1e-4), thresh_conv (convergence threshold; default: 1e-7), qa_updates_max (maxi-
mum number of quadratic approximation updates; default: 100, but fixed to 1 in case of
the Gaussian family with identity link), ls_iter_max (maximum number of line search
iterations; default: 30, but fixed to 1 in case of the Gaussian family with identity link),
normalize (single logical value indicating whether to scale the predictors internally with
the returned regression coefficient estimates being back-adjusted appropriately; default:
TRUE), beta0_init (single numeric value giving the starting value for the intercept at
centered predictors; default: 0), and beta_init (numeric vector giving the starting val-
ues for the regression coefficients; default: vector of 0s).

– For the augmented-data projection: MASS::polr() (the returned object inherits from
class polr) for the brms::cumulative() family or rstanarm::stan_polr() fits, nnet::multinom()
(the returned object inherits from class multinom) for the brms::categorical() family.

• Submodel with multilevel but no additive terms:
– For the traditional (or latent) projection (or the augmented-data projection in case of the
binomial() or brms::bernoulli() family): lme4::lmer() (the returned object inher-
its from class lmerMod) for the gaussian() family, lme4::glmer() (the returned object
inherits from class glmerMod) for all other families.

– For the augmented-data projection: ordinal::clmm() (the returned object inherits from
class clmm) for the brms::cumulative() family, mclogit::mblogit() (the returned
object inherits from class mmblogit) for the brms::categorical() family.

• Submodel without multilevel but additive terms: mgcv::gam() (the returned object inherits
from class gam).

• Submodel with multilevel and additive terms: gamm4::gamm4() (within projpred, the re-
turned object inherits from class gamm4).

Verbosity, messages, warnings, errors

Global option projpred.verbose may be used for specifying the value passed to argument verbose
of project(), varsel(), and cv_varsel().

By default, projpred catches messages and warnings from the draw-wise divergence minimizers
and throws their unique collection after performing all draw-wise divergence minimizations (i.e.,
draw-wise projections). This can be deactivated by setting global option projpred.warn_proj_drawwise
to FALSE.

Furthermore, by default, projpred checks the convergence of the draw-wise divergence minimizers
and throws a warning if any seem to have not converged. This warning is thrown after the warning
message from global option projpred.warn_proj_drawwise (see above) and can be deactivated
by setting global option projpred.check_convergence to FALSE.

Parallelization

The projection of the reference model onto a submodel can be run in parallel (across the projected
draws). This is powered by the foreach package. Thus, any parallel (or sequential) backend compat-
ible with foreach can be used, e.g., the backends from packages doParallel, doMPI, or doFuture.

projpred-package 5

Using the global option projpred.parallel_proj_trigger, the number of projected draws be-
low which no parallelization is applied (even if a parallel backend is registered) can be modified.
Such a "trigger" threshold exists because of the computational overhead of a parallelization which
makes the projection parallelization only useful for a sufficiently large number of projected draws.
By default, the projection parallelization is turned off, which can also be achieved by supplying
Inf (or NULL) to option projpred.parallel_proj_trigger. Note that we cannot recommend the
projection parallelization on Windows because in our experience, the parallelization overhead is
larger there, causing a parallel run to take longer than a sequential run. Also note that the projection
parallelization works well for submodels which are GLMs (and hence also for the latent projection
if the submodel has no multilevel or additive predictor terms), but for all other types of submodels,
the fitted submodel objects are quite big, which—when running in parallel—may lead to exces-
sive memory usage which in turn may crash the R session (on Unix systems, setting an appropriate
memory limit via unix::rlimit_as() may avoid crashing the whole machine). Thus, we currently
cannot recommend parallelizing projections onto submodels which are GLMs (in this context, the
latent projection onto a submodel without multilevel and without additive terms may be regarded
as a projection onto a submodel which is a GLM). However, for cv_varsel(), there is also a CV
parallelization (i.e., a parallelization of projpred’s cross-validation) which can be activated via
argument parallel (which in turn can be controlled via global option projpred.parallel_cv).

For the CV parallelization, global option projpred.export_to_workers may be set to a character
vector of names of objects to export from the global environment to the parallel workers.

During parallelization (either of the projection or the CV), progression updates can be received via
the progressr package. This only works if the doFuture backend is used for parallelization, e.g., via
doFuture::registerDoFuture() and future::plan(future::multisession, workers = 4). In
that case, the progressr package can be used, e.g., by calling progressr::handlers(global =
TRUE) before running the projection or the CV in parallel. The projpred package also offers
the global option projpred.use_progressr for controlling whether to use the progressr pack-
age (TRUE or FALSE), but since that global option defaults to requireNamespace("progressr",
quietly = TRUE) && interactive() && identical(foreach::getDoParName(), "doFuture"), it
usually does not need to be set by the user.

Multilevel models: "Integrating out" group-level effects

In case of multilevel models, projpred offers two global options for "integrating out" group-level ef-
fects: projpred.mlvl_pred_new and projpred.mlvl_proj_ref_new. When setting projpred.mlvl_pred_new
to TRUE (default is FALSE), then at prediction time, projpred will treat group levels existing in the
training data as new group levels, implying that their group-level effects are drawn randomly from a
(multivariate) Gaussian distribution. This concerns both, the reference model and the (i.e., any) sub-
model. Furthermore, setting projpred.mlvl_pred_new to TRUE causes as.matrix.projection()
and as_draws_matrix.projection() to omit the projected group-level effects (for the group lev-
els from the original dataset). When setting projpred.mlvl_proj_ref_new to TRUE (default is
FALSE), then at projection time, the reference model’s fitted values (that the submodels fit to) will
be computed by treating the group levels from the original dataset as new group levels, implying that
their group-level effects will be drawn randomly from a (multivariate) Gaussian distribution (as long
as the reference model is a multilevel model, which—for custom reference models—does not need
to be the case). This also affects the latent response values for a latent projection correspondingly.
Setting projpred.mlvl_pred_new to TRUE makes sense, e.g., when the prediction task is such that
any group level will be treated as a new one. Typically, setting projpred.mlvl_proj_ref_new to
TRUE only makes sense when projpred.mlvl_pred_new is already set to TRUE. In that case, the de-

6 projpred-package

fault of FALSE for projpred.mlvl_proj_ref_new ensures that at projection time, the submodels fit
to the best possible fitted values from the reference model, and setting projpred.mlvl_proj_ref_new
to TRUE would make sense if the group-level effects should be integrated out completely.

Memory usage

By setting the global option projpred.run_gc to TRUE, projpred will call gc() at some places
(e.g., after each size that the forward search passes through) to free up some memory. These gc()
calls are not always necessary to reduce the peak memory usage, but they add runtime (hence the
default of FALSE for that global option).

Other notes

Global option projpred.digits controls arguments digits of print.vselsummary() and print.vsel().

There are several global options to control arguments of plot.vsel() and plot.cv_proportions()
globally, see section "Usage" of the help pages of these two functions.

Global option projpred.warn_L1_interactions may be set to FALSE to deactivate a warning
that an L1 search selected an interaction term before all involved lower-order interaction terms
(including main-effect terms) were selected (in which case the predictor ranking is automatically
modified by projpred so that the lower-order interaction terms come before this interaction term).

Most examples are not executed when called via example(). To execute them, their code has to be
copied and pasted manually to the console.

Functions

init_refmodel(), get_refmodel() For setting up an object containing information about the ref-
erence model, the submodels, and how the projection should be carried out. Explicit calls to
init_refmodel() and get_refmodel() are only rarely needed.

varsel(), cv_varsel() For running the search part and the evaluation part for a projection pre-
dictive variable selection, possibly with cross-validation (CV).

summary.vsel(), print.vsel(), plot.vsel(), suggest_size.vsel(), ranking(), cv_proportions(), plot.cv_proportions(), performances()
For post-processing the results from varsel() and cv_varsel().

project() For projecting the reference model onto submodel(s). Typically, this follows the vari-
able selection, but it can also be applied directly (without a variable selection).

as.matrix.projection() and as_draws_matrix.projection() For extracting projected param-
eter draws.

proj_linpred(), proj_predict() For making predictions from a submodel (after projecting the
reference model onto it).

Author(s)

Maintainer: Osvaldo Martin <aloctavodia@gmail.com>

Authors:

• Juho Piironen <juho.t.piironen@gmail.com>

• Markus Paasiniemi

as.matrix.projection 7

• Alejandro Catalina <alecatfel@gmail.com>

• Frank Weber

• Aki Vehtari

Other contributors:

• Jonah Gabry [contributor]

• Marco Colombo [contributor]

• Paul-Christian Bürkner [contributor]

• Hamada S. Badr [contributor]

• Brian Sullivan [contributor]

• Sölvi Rögnvaldsson [contributor]

• The LME4 Authors (see file ’LICENSE’ for details) [copyright holder]

• Yann McLatchie [contributor]

• Juho Timonen [contributor]

See Also

Useful links:

• https://mc-stan.org/projpred/

• https://discourse.mc-stan.org

• Report bugs at https://github.com/stan-dev/projpred/issues/

as.matrix.projection Extract projected parameter draws and coerce to matrix

Description

This is the as.matrix() method for projection objects (returned by project(), possibly as ele-
ments of a list). It extracts the projected parameter draws and returns them as a matrix. In case of
different (i.e., nonconstant) weights for the projected draws, see as_draws_matrix.projection()
for a better solution.

Usage

S3 method for class 'projection'
as.matrix(x, nm_scheme = NULL, allow_nonconst_wdraws_prj = FALSE, ...)

https://mc-stan.org/projpred/
https://discourse.mc-stan.org
https://github.com/stan-dev/projpred/issues/

8 as.matrix.projection

Arguments

x An object of class projection (returned by project(), possibly as elements
of a list).

nm_scheme The naming scheme for the columns of the output matrix. Either NULL, "rstanarm",
or "brms", where NULL chooses "rstanarm" or "brms" based on the class of the
reference model fit (and uses "rstanarm" if the reference model fit is of an un-
known class).

allow_nonconst_wdraws_prj

A single logical value indicating whether to allow projected draws with different
(i.e., nonconstant) weights (TRUE) or not (FALSE). CAUTION: Expert use only
because if set to TRUE, the weights of the projected draws are stored in an at-
tribute wdraws_prj and handling this attribute requires special care (e.g., when
subsetting the returned matrix).

... Currently ignored.

Details

In case of the augmented-data projection for a multilevel submodel of a brms::categorical() ref-
erence model, the multilevel parameters (and therefore also their names) slightly differ from those
in the brms reference model fit (see section "Augmented-data projection" in extend_family()’s
documentation).

Value

An Sprj×Q matrix of projected draws, with Sprj denoting the number of projected draws and Q the
number of parameters. If allow_nonconst_wdraws_prj is set to TRUE, the weights of the projected
draws are stored in an attribute wdraws_prj. (If allow_nonconst_wdraws_prj is FALSE, projected
draws with nonconstant weights cause an error.)

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `ndraws`, but only for the sake of speed in this example; this
is not recommended in general):
prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), ndraws = 21,

seed = 9182)

Applying the as.matrix() generic to the output of project() dispatches to

as_draws_matrix.projection 9

the projpred::as.matrix.projection() method:
prj_mat <- as.matrix(prj)

Since the draws have all the same weight here, we can treat them like
ordinary MCMC draws, e.g., we can summarize them using the `posterior`
package:
if (requireNamespace("posterior", quietly = TRUE)) {

print(posterior::summarize_draws(
posterior::as_draws_matrix(prj_mat),
"median", "mad", function(x) quantile(x, probs = c(0.025, 0.975))

))
}
Or visualize them using the `bayesplot` package:
if (requireNamespace("bayesplot", quietly = TRUE)) {

print(bayesplot::mcmc_intervals(prj_mat))
}

as_draws_matrix.projection

Extract projected parameter draws and coerce to draws_matrix (see
package posterior)

Description

These are the posterior::as_draws() and posterior::as_draws_matrix() methods for projection
objects (returned by project(), possibly as elements of a list). They extract the projected param-
eter draws and return them as a draws_matrix. In case of different (i.e., nonconstant) weights for
the projected draws, a draws_matrix allows for a safer handling of these weights (safer in contrast
to the matrix returned by as.matrix.projection()), in particular by providing the natural input
for posterior::resample_draws() (see section "Examples" below).

Usage

S3 method for class 'projection'
as_draws_matrix(x, ...)

S3 method for class 'projection'
as_draws(x, ...)

Arguments

x An object of class projection (returned by project(), possibly as elements
of a list).

... Arguments passed to as.matrix.projection(), except for allow_nonconst_wdraws_prj.

10 as_draws_matrix.projection

Details

In case of the augmented-data projection for a multilevel submodel of a brms::categorical() ref-
erence model, the multilevel parameters (and therefore also their names) slightly differ from those
in the brms reference model fit (see section "Augmented-data projection" in extend_family()’s
documentation).

Value

An Sprj × Q draws_matrix (see posterior::draws_matrix()) of projected draws, with Sprj

denoting the number of projected draws and Q the number of parameters. If the projected draws
have nonconstant weights, posterior::weight_draws() is applied internally.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for illustrative purposes; this is not
recommended in general):
prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), nclusters = 5,

seed = 9182)

Applying the posterior::as_draws_matrix() generic to the output of
project() dispatches to the projpred::as_draws_matrix.projection()
method:
prj_draws <- posterior::as_draws_matrix(prj)

Resample the projected draws according to their weights:
set.seed(3456)
prj_draws_resampled <- posterior::resample_draws(prj_draws, ndraws = 1000)

The values from the following two objects should be the same (in general,
this only holds approximately):
print(proportions(table(rownames(prj_draws_resampled))))
print(weights(prj_draws))

Treat the resampled draws like ordinary draws, e.g., summarize them:
print(posterior::summarize_draws(

prj_draws_resampled,
"median", "mad", function(x) quantile(x, probs = c(0.025, 0.975))

))
Or visualize them using the `bayesplot` package:

augdat_ilink_binom 11

if (requireNamespace("bayesplot", quietly = TRUE)) {
print(bayesplot::mcmc_intervals(prj_draws_resampled))

}

augdat_ilink_binom Inverse-link function for augmented-data projection with binomial
family

Description

This is the function which has to be supplied to extend_family()’s argument augdat_ilink in
case of the augmented-data projection for the binomial() family.

Usage

augdat_ilink_binom(eta_arr, link = "logit")

Arguments

eta_arr An array as described in section "Augmented-data projection" of extend_family()’s
documentation.

link The same as argument link of binomial().

Value

An array as described in section "Augmented-data projection" of extend_family()’s documenta-
tion.

augdat_link_binom Link function for augmented-data projection with binomial family

Description

This is the function which has to be supplied to extend_family()’s argument augdat_link in case
of the augmented-data projection for the binomial() family.

Usage

augdat_link_binom(prb_arr, link = "logit")

Arguments

prb_arr An array as described in section "Augmented-data projection" of extend_family()’s
documentation.

link The same as argument link of binomial().

12 cl_agg

Value

An array as described in section "Augmented-data projection" of extend_family()’s documenta-
tion.

break_up_matrix_term Break up matrix terms

Description

Sometimes there can be terms in a formula that refer to a matrix instead of a single predictor. This
function breaks up the matrix term into individual predictors to handle separately, as that is probably
the intention of the user.

Usage

break_up_matrix_term(formula, data)

Arguments

formula A formula for a valid model.

data The original data.frame with a matrix as predictor.

Value

A list containing the expanded formula and the expanded data.frame.

cl_agg Weighted averaging within clusters of parameter draws

Description

This function aggregates S parameter draws that have been clustered into Scl clusters by averaging
across the draws that belong to the same cluster. This averaging can be done in a weighted fashion.

Usage

cl_agg(
draws,
cl = seq_len(nrow(draws)),
wdraws = rep(1, nrow(draws)),
eps_wdraws = 0

)

cv-indices 13

Arguments

draws An S×P matrix of parameter draws, with P denoting the number of parameters.

cl A numeric vector of length S, giving the cluster indices for the draws. The
cluster indices need to be values from the set {1, ..., Scl}, except for draws that
should be dropped (e.g., by thinning), in which case NA needs to be provided at
the positions of cl corresponding to these draws.

wdraws A numeric vector of length S, giving the weights of the draws. It doesn’t matter
whether these are normalized (i.e., sum to 1) or not because internally, these
weights are normalized to sum to 1 within each cluster. Draws that should be
dropped (e.g., by thinning) can (but must not necessarily) have an NA in wdraws.

eps_wdraws A positive numeric value (typically small) which will be used to improve numer-
ical stability: The weights of the draws within each cluster are multiplied by 1 -
eps_wdraws. The default of 0 should be fine for most cases; this argument only
exists to help in those cases where numerical instabilities occur (which must be
detected by the user; this function will not detect numerical instabilities itself).

Value

An Scl × P matrix of aggregated parameter draws.

Examples

set.seed(323)
S <- 100L
P <- 3L
draws <- matrix(rnorm(S * P), nrow = S, ncol = P)
Clustering example:
S_cl <- 10L
cl_draws <- sample.int(S_cl, size = S, replace = TRUE)
draws_cl <- cl_agg(draws, cl = cl_draws)
Clustering example with nonconstant `wdraws`:
w_draws <- rgamma(S, shape = 4)
draws_cl <- cl_agg(draws, cl = cl_draws, wdraws = w_draws)
Thinning example (implying constant `wdraws`):
S_th <- 50L
idxs_thin <- round(seq(1, S, length.out = S_th))
th_draws <- rep(NA, S)
th_draws[idxs_thin] <- seq_len(S_th)
draws_th <- cl_agg(draws, cl = th_draws)

cv-indices Create cross-validation folds

14 cv-indices

Description

These are helper functions to create cross-validation (CV) folds, i.e., to split up the indices from
1 to n into K subsets ("folds") for K-fold CV. These functions are potentially useful when cre-
ating the input for arguments cvfits and cvfun of init_refmodel() (or argument cvfits of
cv_varsel.refmodel()). Function cvfolds() is deprecated; please use cv_folds() instead
(apart from the name, they are the same). The return value of cv_folds() and cv_ids() is differ-
ent, see below for details.

Usage

cv_folds(n, K, seed = NA)

cvfolds(n, K, seed = NA)

cv_ids(n, K, out = c("foldwise", "indices"), seed = NA)

Arguments

n Number of observations.

K Number of folds. Must be at least 2 and not exceed n.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling cv_folds() or cv_ids()) upon exiting cv_folds()
or cv_ids().

out Format of the output, either "foldwise" or "indices". See below for details.

Value

cv_folds() returns a vector of length n such that each element is an integer between 1 and K
denoting which fold the corresponding data point belongs to. The return value of cv_ids() depends
on the out argument. If out = "foldwise", the return value is a list with K elements, each being a
list with elements tr and ts giving the training and test indices, respectively, for the corresponding
fold. If out = "indices", the return value is a list with elements tr and ts each being a list
with K elements giving the training and test indices, respectively, for each fold.

Examples

n <- 100
set.seed(1234)
y <- rnorm(n)
cv <- cv_ids(n, K = 5)
Mean within the test set of each fold:
cvmeans <- sapply(cv, function(fold) mean(y[fold$ts]))

cv_proportions 15

cv_proportions Ranking proportions from fold-wise predictor rankings

Description

Calculates the ranking proportions from the fold-wise predictor rankings in a cross-validation (CV)
with fold-wise searches. For a given predictor x and a given submodel size j, the ranking proportion
is the proportion of CV folds which have predictor x at position j of their predictor ranking. While
these ranking proportions are helpful for investigating variability in the predictor ranking, they can
also be cumulated across submodel sizes. The cumulated ranking proportions are more helpful
when it comes to model selection.

Usage

cv_proportions(object, ...)

S3 method for class 'ranking'
cv_proportions(object, cumulate = FALSE, ...)

S3 method for class 'vsel'
cv_proportions(object, ...)

Arguments

object For cv_proportions.ranking(): an object of class ranking (returned by ranking()).
For cv_proportions.vsel(): an object of class vsel (returned by varsel()
or cv_varsel()) that ranking() will be applied to internally before then call-
ing cv_proportions.ranking().

... For cv_proportions.vsel(): arguments passed to ranking.vsel() and cv_proportions.ranking().
For cv_proportions.ranking(): currently ignored.

cumulate A single logical value indicating whether the ranking proportions should be cu-
mulated across increasing submodel sizes (TRUE) or not (FALSE).

Value

A numeric matrix containing the ranking proportions. This matrix has nterms_max rows and
nterms_max columns, with nterms_max as specified in the (possibly implicit) ranking() call.
The rows correspond to the submodel sizes and the columns to the predictor terms (sorted accord-
ing to the full-data predictor ranking). If cumulate is FALSE, then the returned matrix is of class
cv_proportions. If cumulate is TRUE, then the returned matrix is of classes cv_proportions_cumul
and cv_proportions (in this order).

Note that if cumulate is FALSE, then the values in the returned matrix only need to sum to 1
(column-wise and row-wise) if nterms_max (see above) is equal to the full model size. Likewise,
if cumulate is TRUE, then the value 1 only needs to occur in each column of the returned matrix if
nterms_max is equal to the full model size.

16 cv_varsel

The cv_proportions() function is only applicable if the ranking object includes fold-wise predic-
tor rankings (i.e., if it is based on a vsel object created by cv_varsel() with validate_search =
TRUE). If the ranking object contains only a full-data predictor ranking (i.e., if it is based on a vsel
object created by varsel() or by cv_varsel(), but the latter with validate_search = FALSE),
then an error is thrown because in that case, there are no fold-wise predictor rankings from which
to calculate ranking proportions.

See Also

plot.cv_proportions()

Examples

For an example, see `?plot.cv_proportions`.

cv_varsel Run search and performance evaluation with cross-validation

Description

Run the search part and the evaluation part for a projection predictive variable selection. The
search part determines the predictor ranking (also known as solution path), i.e., the best submodel
for each submodel size (number of predictor terms). The evaluation part determines the predictive
performance of the submodels along the predictor ranking. In contrast to varsel(), cv_varsel()
performs a cross-validation (CV) by running the search part with the training data of each CV fold
separately (an exception is explained in section "Note" below) and by running the evaluation part
on the corresponding test set of each CV fold. A special method is cv_varsel.vsel() because it
re-uses the search results from an earlier cv_varsel() (or varsel()) run, as illustrated in the main
vignette.

Usage

cv_varsel(object, ...)

Default S3 method:
cv_varsel(object, ...)

S3 method for class 'vsel'
cv_varsel(
object,
cv_method = object$cv_method %||% "LOO",
nloo = object$nloo,
K = object$K %||% if (!inherits(object, "datafit")) 5 else 10,
cvfits = object$cvfits,
validate_search = object$validate_search %||% TRUE,
...

cv_varsel 17

)

S3 method for class 'refmodel'
cv_varsel(
object,
method = "forward",
cv_method = if (!inherits(object, "datafit")) "LOO" else "kfold",
ndraws = NULL,
nclusters = 20,
ndraws_pred = 400,
nclusters_pred = NULL,
refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,
penalty = NULL,
verbose = getOption("projpred.verbose", as.integer(interactive())),
nloo = if (cv_method == "LOO") object$nobs else NULL,
K = if (!inherits(object, "datafit")) 5 else 10,
cvfits = object$cvfits,
search_control = NULL,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
validate_search = TRUE,
seed = NA,
search_terms = NULL,
search_out = NULL,
parallel = getOption("projpred.parallel_cv", FALSE),
...

)

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel().

... For cv_varsel.default(): Arguments passed to get_refmodel() as well as
to cv_varsel.refmodel(). For cv_varsel.vsel(): Arguments passed to
cv_varsel.refmodel(). For cv_varsel.refmodel(): Arguments passed to
the divergence minimizer (see argument div_minimizer of init_refmodel()
as well as section "Draw-wise divergence minimizers" of projpred-package)
when refitting the submodels for the performance evaluation (if refit_prj is
TRUE).

cv_method The CV method, either "LOO" or "kfold". In the "LOO" case, a Pareto-smoothed
importance sampling leave-one-out CV (PSIS-LOO CV) is performed, which
avoids refitting the reference model nloo times (in contrast to a standard LOO-
CV). In the "kfold" case, a K-fold CV is performed. See also section "Note"
below.

nloo Only relevant if cv_method = "LOO" and validate_search = TRUE. If nloo > 0
is smaller than the number of all observations, full LOO-CV (i.e., PSIS-LOO CV

18 cv_varsel

with validate_search = TRUE and with nloo = n where n denotes the number
of all observations) is approximated by subsampled LOO-CV, i.e., by combin-
ing the fast (i.e., validate_search = FALSE) LOO result for the selected mod-
els and nloo leave-one-out searches using the difference estimator with sim-
ple random sampling (SRS) without replacement (WOR) (Magnusson et al.,
2020). Smaller nloo values lead to faster computation, but higher uncertainty
in the evaluation part. If NULL, all observations are used (as by default). Note
that performance statistic "auc" (see argument stats of summary.vsel() and
plot.vsel()) is not supported in case of subsampled LOO-CV. Furthermore,
option "best" for argument baseline of summary.vsel() and plot.vsel()
is not supported in case of subsampled LOO-CV.

K Only relevant if cv_method = "kfold" and if cvfits is NULL (which is the case
for reference model objects created by get_refmodel.stanreg() or brms::get_refmodel.brmsfit()).
Number of folds in K-fold CV.

cvfits Only relevant if cv_method = "kfold". The same as argument cvfits of init_refmodel(),
but repeated here so that output from run_cvfun() can be inserted here straight-
forwardly.

validate_search

A single logical value indicating whether to cross-validate also the search part,
i.e., whether to run the search separately for each CV fold (TRUE) or not (FALSE).
With FALSE, the computation is faster, but the predictive performance estimates
of the selected submodels are optimistically biased. However, these fast biased
estimates can be useful to obtain initial information on the usefulness of projec-
tion predictive variable selection.

method The method for the search part. Possible options are "forward" for forward
search and "L1" for L1 search. See also section "Details" below.

ndraws Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

nclusters Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

ndraws_pred Only relevant if refit_prj is TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

nclusters_pred Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

refit_prj For the evaluation part, should the projections onto the submodels along the pre-
dictor ranking be performed again using ndraws_pred draws or nclusters_pred
clusters (TRUE) or should their projections from the search part, which used
ndraws draws or nclusters clusters, be re-used (FALSE)?

nterms_max Maximum submodel size (number of predictor terms) up to which the search
is continued. If NULL, then min(19, D) is used where D is the number of terms

cv_varsel 19

in the reference model (or in search_terms, if supplied). Note that nterms_max
does not count the intercept, so use nterms_max = 0 for the intercept-only model.
(Correspondingly, D above does not count the intercept.)

penalty Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of 0 means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

verbose A single integer value from the set {0, 1, 2, 3, 4} (for varsel(), 3 and 4 have the
same effect), indicating how much information (if any) to print out during the
computations. Higher values indicate that more information should be printed, 0
deactivates the verbose mode. Internally, argument verbose is coerced to inte-
ger via as.integer(), so technically, a single logical value or a single numeric
value work as well.

search_control A list of "control" arguments (i.e., tuning parameters) for the search. In case
of forward search, these arguments are passed to the divergence minimizer (see
argument div_minimizer of init_refmodel() as well as section "Draw-wise
divergence minimizers" of projpred-package). In case of forward search, NULL
causes ... to be used not only for the performance evaluation, but also for the
search. In case of L1 search, possible arguments are:

• lambda_min_ratio: Ratio between the smallest and largest lambda in the
L1-penalized search (default: 1e-5). This parameter essentially determines
how long the search is carried out, i.e., how large submodels are explored.
No need to change this unless the program gives a warning about this.

• nlambda: Number of values in the lambda grid for L1-penalized search
(default: 150). No need to change this unless the program gives a warning
about this.

• thresh: Convergence threshold when computing the L1 path (default: 1e-6).
Usually, there is no need to change this.

lambda_min_ratio

Deprecated (please use search_control instead). Only relevant for L1 search.
Ratio between the smallest and largest lambda in the L1-penalized search. This
parameter essentially determines how long the search is carried out, i.e., how
large submodels are explored. No need to change this unless the program gives
a warning about this.

nlambda Deprecated (please use search_control instead). Only relevant for L1 search.
Number of values in the lambda grid for L1-penalized search. No need to change
this unless the program gives a warning about this.

thresh Deprecated (please use search_control instead). Only relevant for L1 search.
Convergence threshold when computing the L1 path. Usually, there is no need
to change this.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is re-
set (to the state before calling cv_varsel()) upon exiting cv_varsel(). Here,
seed is used for clustering the reference model’s posterior draws (if !is.null(nclusters)
or !is.null(nclusters_pred)), for subsampling PSIS-LOO CV folds (if nloo

20 cv_varsel

is smaller than the number of observations), for sampling the folds in K-fold
CV, and for drawing new group-level effects when predicting from a multilevel
submodel (however, not yet in case of a GAMM).

search_terms Only relevant for forward search. A custom character vector of predictor term
blocks to consider for the search. Section "Details" below describes more pre-
cisely what "predictor term block" means. The intercept ("1") is always in-
cluded internally via union(), so there’s no difference between including it ex-
plicitly or omitting it. The default search_terms considers all the terms in the
reference model’s formula.

search_out Intended for internal use.

parallel A single logical value indicating whether to run costly parts of the CV in par-
allel (TRUE) or not (FALSE). See also section "Note" below as well as section
"Parallelization" in projpred-package.

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws
in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms or a reference model set up for the augmented-data projection, only the forward
search is available. Furthermore, argument search_terms requires a forward search to take effect.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also overfit when more predictors are added. This overfit can be detected by running
search validation (see cv_varsel()).

An L1 search may select an interaction term before all involved lower-order interaction terms (in-
cluding main-effect terms) have been selected. In projpred versions > 2.6.0, the resulting predictor
ranking is automatically modified so that the lower-order interaction terms come before this inter-
action term, but if this is conceptually undesired, choose the forward search instead.

The elements of the search_terms character vector don’t need to be individual predictor terms.
Instead, they can be building blocks consisting of several predictor terms connected by the + sym-
bol. To understand how these building blocks work, it is important to know how projpred’s forward
search works: It starts with an empty vector chosen which will later contain already selected predic-
tor terms. Then, the search iterates over model sizes j ∈ {0, ..., J} (with J denoting the maximum
submodel size, not counting the intercept). The candidate models at model size j are constructed
from those elements from search_terms which yield model size j when combined with the chosen
predictor terms. Note that sometimes, there may be no candidate models for model size j. Also
note that internally, search_terms is expanded to include the intercept ("1"), so the first step of the
search (model size 0) always consists of the intercept-only model as the only candidate.

As a search_terms example, consider a reference model with formula y ~ x1 + x2 + x3. Then, to
ensure that x1 is always included in the candidate models, specify search_terms = c("x1", "x1 +
x2", "x1 + x3", "x1 + x2 + x3") (or, in a simpler way that leads to the same results, search_terms
= c("x1", "x1 + x2", "x1 + x3"), for which helper function force_search_terms() exists). This

cv_varsel 21

search would start with y ~ 1 as the only candidate at model size 0. At model size 1, y ~ x1 would
be the only candidate. At model size 2, y ~ x1 + x2 and y ~ x1 + x3 would be the two candidates.
At the last model size of 3, y ~ x1 + x2 + x3 would be the only candidate. As another example, to
exclude x1 from the search, specify search_terms = c("x2", "x3", "x2 + x3") (or, in a simpler
way that leads to the same results, search_terms = c("x2", "x3")).

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the main vignette and projpred-package).

Note

If validate_search is FALSE, the search is not included in the CV so that only a single full-data
search is run. If the number of observations is large, the fast PSIS-LOO CV along the full-data
search path is likely to be accurate. If the number of observations is small or moderate, the fast
PSIS-LOO CV along the full-data search path is likely to have optimistic bias in the middle of the
search path. This result can be used to guide further actions and the optimistic bias can be greatly
reduced by using validate_search = TRUE.

PSIS uses the Pareto-k̂ diagnostic to assess the reliability of PSIS-LOO CV. Global option projpred.warn_psis
(default TRUE) controls whether the Pareto-k̂ diagnostics may result in warnings. See loo::loo-
glossary for how to interpret the Pareto-k̂ values and the warning thresholds. projpred does not sup-
port the usually recommended moment-matching (see loo::loo_moment_match() and brms::loo_moment_match()),
mixture importance sampling (vignette("loo2-mixis", package="loo")), or reloo-ing (brms::reloo()).
If the reference model PSIS-LOO CV Pareto-k̂ values are good, but there are high Pareto-k̂ values
for the projected models, you can try increasing the number of draws used for the PSIS-LOO CV
(ndraws in case of refit_prj = FALSE; ndraws_pred in case of refit_prj = TRUE). If increasing
the number of draws does not help and if the reference model PSIS-LOO CV Pareto-k̂ values are
high, and the reference model PSIS-LOO CV results change substantially when using moment-
matching, mixture importance sampling, or reloo-ing, we recommend to use K-fold CV within
projpred.

For PSIS-LOO CV, projpred calls loo::psis() (or, exceptionally, loo::sis(), see below) with
r_eff = NA. This is only a problem if there was extreme autocorrelation between the MCMC itera-
tions when the reference model was built. In those cases however, the reference model should not
have been used anyway, so we don’t expect projpred’s r_eff = NA to be a problem.

PSIS cannot be used if the number of draws or clusters is too small. In such cases, projpred
resorts to standard importance sampling (SIS) and shows a message about this. Throughout the
documentation, the term "PSIS" is used even though in fact, projpred resorts to SIS in these special
cases. If SIS is used, check that the reference model PSIS-LOO CV Pareto-k̂ values are good.

With parallel = TRUE, costly parts of projpred’s CV can be run in parallel. Costly parts are the
fold-wise searches and performance evaluations in case of validate_search = TRUE. (Note that in
case of K-fold CV, the K reference model refits are not affected by argument parallel; only pro-
jpred’s CV is affected.) The parallelization is powered by the foreach package. Thus, any parallel
(or sequential) backend compatible with foreach can be used, e.g., the backends from packages
doParallel, doMPI, or doFuture. For GLMs, this CV parallelization should work reliably, but for
other models (such as GLMMs), it may lead to excessive memory usage which in turn may crash
the R session (on Unix systems, setting an appropriate memory limit via unix::rlimit_as() may
avoid crashing the whole machine). However, the problem of excessive memory usage is less

22 cv_varsel

pronounced for the CV parallelization than for the projection parallelization described in projpred-
package. In that regard, the CV parallelization is recommended over the projection parallelization.

References

Magnusson, Måns, Michael Riis Andersen, Johan Jonasson, Aki Vehtari. 2020. "Leave-One-Out
Cross-Validation for Bayesian Model Comparison in Large Data." In Proceedings of the 23rd
International Conference on Artificial Intelligence and Statistics, edited by Silvia Chiappa and
Roberto Calandra, 108:341–351. Proceedings of Machine Learning Research. PMLR. https:
//proceedings.mlr.press/v108/magnusson20a.html.

McLatchie, Yann, Sölvi Rögnvaldsson, Frank Weber, and Aki Vehtari. 2025. "Advances in Projec-
tion Predictive Inference." Statistical Science, 40 (1):128–147. doi:10.1214/24STS949.

Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. "Projective Inference in High-Dimensional
Problems: Prediction and Feature Selection." Electronic Journal of Statistics, 14 (1):2155–2197.
doi:10.1214/20EJS1711.

Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. "Practical Bayesian Model Evaluation
Using Leave-One-Out Cross-Validation and WAIC." Statistics and Computing, 27 (5):1413–32.
doi:10.1007/s1122201696964.

Vehtari, Aki, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2024. "Pareto
Smoothed Importance Sampling." Journal of Machine Learning Research, 25 (72):1–58. https:
//jmlr.org/papers/v25/19-556.html.

See Also

varsel()

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 1000, refresh = 0, seed = 9876

)

Run cv_varsel() (with L1 search and small values for `K`, `nterms_max`, and
`nclusters_pred`, but only for the sake of speed in this example; this is
not recommended in general):
cvvs <- cv_varsel(fit, method = "L1", cv_method = "kfold", K = 2,

nterms_max = 3, nclusters_pred = 10, seed = 5555)
Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

https://proceedings.mlr.press/v108/magnusson20a.html
https://proceedings.mlr.press/v108/magnusson20a.html
https://doi.org/10.1214/24-STS949
https://doi.org/10.1214/20-EJS1711
https://doi.org/10.1007/s11222-016-9696-4
https://jmlr.org/papers/v25/19-556.html
https://jmlr.org/papers/v25/19-556.html

df_binom 23

df_binom Binomial toy example

Description

Binomial toy example

Usage

df_binom

Format

A simulated classification dataset containing 100 observations.

y response, 0 or 1.

x predictors, 30 in total.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData

df_gaussian Gaussian toy example

Description

Gaussian toy example

Usage

df_gaussian

Format

A simulated regression dataset containing 100 observations.

y response, real-valued.

x predictors, 20 in total. Mean and SD are approximately 0 and 1, respectively.

Source

https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

https://web.stanford.edu/~hastie/glmnet/glmnetData/BNExample.RData
https://web.stanford.edu/~hastie/glmnet/glmnetData/QSExample.RData

24 extend_family

extend_family Extend a family

Description

This function adds some internally required elements to an object of class family (see, e.g., family()).
It is called internally by init_refmodel(), so you will rarely need to call it yourself.

Usage

extend_family(
family,
latent = FALSE,
latent_y_unqs = NULL,
latent_ilink = NULL,
latent_ll_oscale = NULL,
latent_ppd_oscale = NULL,
augdat_y_unqs = NULL,
augdat_link = NULL,
augdat_ilink = NULL,
augdat_args_link = list(),
augdat_args_ilink = list(),
...

)

Arguments

family An object of class family.

latent A single logical value indicating whether to use the latent projection (TRUE) or
not (FALSE). Note that setting latent = TRUE causes all arguments starting with
augdat_ to be ignored.

latent_y_unqs Only relevant for a latent projection where the original response space has fi-
nite support (i.e., the original response values may be regarded as categories),
in which case this needs to be the character vector of unique response values
(which will be assigned to family$cats internally) or may be left at NULL (so
that projpred will try to infer it from family$cats). See also section "Latent
projection" below.

latent_ilink Only relevant for the latent projection, in which case this needs to be the inverse-
link function. If the original response family was the binomial() or the poisson()
family, then latent_ilink can be NULL, in which case an internal default will
be used. Can also be NULL in all other cases, but then an internal default based
on family$linkinv will be used which might not work for all families. See
also section "Latent projection" below.

latent_ll_oscale

Only relevant for the latent projection, in which case this needs to be the function
computing response-scale (not latent-scale) log-likelihood values. If !is.null(family$cats)

extend_family 25

(after taking latent_y_unqs into account) or if the original response family
was the binomial() or the poisson() family, then latent_ll_oscale can be
NULL, in which case an internal default will be used. Can also be NULL in all other
cases, but then downstream functions will have limited functionality (a message
thrown by extend_family() will state what exactly won’t be available). See
also section "Latent projection" below.

latent_ppd_oscale

Only relevant for the latent projection, in which case this needs to be the func-
tion sampling response values given latent predictors that have been transformed
to response scale using latent_ilink. If !is.null(family$cats) (after tak-
ing latent_y_unqs into account) or if the original response family was the
binomial() or the poisson() family, then latent_ppd_oscale can be NULL,
in which case an internal default will be used. Can also be NULL in all other
cases, but then downstream functions will have limited functionality (a message
thrown by extend_family() will state what exactly won’t be available). See
also section "Latent projection" below. Note that although this function has the
abbreviation "PPD" in its name (which stands for "posterior predictive distribu-
tion"), projpred currently only uses it in proj_predict(), i.e., for sampling
from what would better be termed posterior-projection predictive distribution
(PPPD).

augdat_y_unqs Only relevant for augmented-data projection, in which case this needs to be the
character vector of unique response values (which will be assigned to family$cats
internally) or may be left at NULL if family$cats is already non-NULL. See also
section "Augmented-data projection" below.

augdat_link Only relevant for augmented-data projection, in which case this needs to be
the link function. Use NULL for the traditional projection. See also section
"Augmented-data projection" below.

augdat_ilink Only relevant for augmented-data projection, in which case this needs to be the
inverse-link function. Use NULL for the traditional projection. See also section
"Augmented-data projection" below.

augdat_args_link

Only relevant for augmented-data projection, in which case this may be a named
list of arguments to pass to the function supplied to augdat_link.

augdat_args_ilink

Only relevant for augmented-data projection, in which case this may be a named
list of arguments to pass to the function supplied to augdat_ilink.

... Ignored (exists only to swallow up further arguments which might be passed to
this function).

Details

In the following, N , Ccat, Clat, Sref , and Sprj from help topic refmodel-init-get are used. Note
that N does not necessarily denote the number of original observations; it can also refer to new
observations. Furthermore, let S denote either Sref or Sprj, whichever is appropriate in the context
where it is used.

26 extend_family

Value

The family object extended in the way needed by projpred.

Augmented-data projection

As their first input, the functions supplied to arguments augdat_link and augdat_ilink have to
accept:

• For augdat_link: an S × N × Ccat array containing the probabilities for the response cat-
egories. The order of the response categories is the same as in family$cats (see argument
augdat_y_unqs).

• For augdat_ilink: an S ×N × Clat array containing the linear predictors.

The return value of these functions needs to be:

• For augdat_link: an S ×N × Clat array containing the linear predictors.

• For augdat_ilink: an S × N × Ccat array containing the probabilities for the response
categories. The order of the response categories has to be the same as in family$cats (see
argument augdat_y_unqs).

For the augmented-data projection, the response vector resulting from extract_model_data (see
init_refmodel()) is coerced to a factor (using as.factor()) at multiple places throughout this
package. Inside of init_refmodel(), the levels of this factor have to be identical to family$cats
(after applying extend_family() inside of init_refmodel()). Everywhere else, these levels
have to be a subset of <refmodel>$family$cats (where <refmodel> is an object resulting from
init_refmodel()). See argument augdat_y_unqs for how to control family$cats.

For ordinal brms families, be aware that the submodels (onto which the reference model is pro-
jected) currently have the following restrictions:

• The discrimination parameter disc is not supported (i.e., it is a constant with value 1).

• The thresholds are "flexible" (see brms::brmsfamily()).

• The thresholds do not vary across the levels of a factor-like variable (see argument gr of
brms::resp_thres()).

• The "probit_approx" link is replaced by "probit".

For the brms::categorical() family, be aware that:

• For multilevel submodels, the group-level effects are allowed to be correlated between differ-
ent response categories.

• For multilevel submodels, mclogit versions < 0.9.4 may throw the error 'a' (<number> x 1)
must be square. Updating mclogit to a version >= 0.9.4 should fix this.

Latent projection

The function supplied to argument latent_ilink needs to have the prototype

latent_ilink(lpreds, cl_ref, wdraws_ref = rep(1, length(cl_ref)))

where:

extend_family 27

• lpreds accepts an S ×N matrix containing the linear predictors.

• cl_ref accepts a numeric vector of length Sref , containing projpred’s internal cluster indices
for these draws.

• wdraws_ref accepts a numeric vector of length Sref , containing weights for these draws.
These weights should be treated as not being normalized (i.e., they don’t necessarily sum to
1).

The return value of latent_ilink needs to contain the linear predictors transformed to the original
response space, with the following structure:

• If is.null(family$cats) (after taking latent_y_unqs into account): an S ×N matrix.

• If !is.null(family$cats) (after taking latent_y_unqs into account): an S × N × Ccat

array. In that case, latent_ilink needs to return probabilities (for the response categories
given in family$cats, after taking latent_y_unqs into account).

The function supplied to argument latent_ll_oscale needs to have the prototype

latent_ll_oscale(ilpreds, dis, y_oscale, wobs = rep(1, length(y_oscale)),
cl_ref, wdraws_ref = rep(1, length(cl_ref)))

where:

• ilpreds accepts the return value from latent_ilink.

• dis accepts a vector of length S containing dispersion parameter draws.

• y_oscale accepts a vector of length N containing response values on the original response
scale.

• wobs accepts a numeric vector of length N containing observation weights.

• cl_ref accepts the same input as argument cl_ref of latent_ilink.

• wdraws_ref accepts the same input as argument wdraws_ref of latent_ilink.

The return value of latent_ll_oscale needs to be an S×N matrix containing the response-scale
(not latent-scale) log-likelihood values for the N observations from its inputs.

The function supplied to argument latent_ppd_oscale needs to have the prototype

latent_ppd_oscale(ilpreds_resamp, dis_resamp, wobs, cl_ref,
wdraws_ref = rep(1, length(cl_ref)), idxs_prjdraws)

where:

• ilpreds_resamp accepts the return value from latent_ilink, but possibly with resampled
(clustered) draws (see argument nresample_clusters of proj_predict()).

• dis_resamp accepts a vector of length dim(ilpreds)[1] containing dispersion parameter
draws, possibly resampled (in the same way as the draws in ilpreds_resamp, see also argu-
ment idxs_prjdraws).

• wobs accepts a numeric vector of length N containing observation weights.

• cl_ref accepts the same input as argument cl_ref of latent_ilink.

28 extra-families

• wdraws_ref accepts the same input as argument wdraws_ref of latent_ilink.

• idxs_prjdraws accepts a numeric vector of length dim(ilpreds_resamp)[1] containing the
resampled indices of the projected draws (i.e., these indices are values from the set {1, ..., dim(ilpreds)[1]}
where ilpreds denotes the return value of latent_ilink).

The return value of latent_ppd_oscale needs to be a dim(ilpreds_resamp)[1]×N matrix con-
taining the response-scale (not latent-scale) draws from the posterior(-projection) predictive distri-
butions for the N observations from its inputs.

If the bodies of these three functions involve parameter draws from the reference model which
have not been projected (e.g., for latent_ilink, the thresholds in an ordinal model), cl_agg()
is provided as a helper function for aggregating these reference model draws in the same way as
the draws have been aggregated for the first argument of these functions (e.g., lpreds in case of
latent_ilink).

In fact, the weights passed to argument wdraws_ref are nonconstant only in case of cv_varsel()
with cv_method = "LOO" and validate_search = TRUE. In that case, the weights passed to this ar-
gument are the PSIS-LOO CV weights for one observation. Note that although argument wdraws_ref
has the suffix _ref, wdraws_ref does not necessarily obtain weights for the initial reference model’s
posterior draws: In case of cv_varsel() with cv_method = "kfold", these weights may refer to
one of the K reference model refits (but in that case, they are constant anyway).

If family$cats is not NULL (after taking latent_y_unqs into account), then the response vec-
tor resulting from extract_model_data (see init_refmodel()) is coerced to a factor (using
as.factor()) at multiple places throughout this package. Inside of init_refmodel(), the lev-
els of this factor have to be identical to family$cats (after applying extend_family() inside of
init_refmodel()). Everywhere else, these levels have to be a subset of <refmodel>$family$cats
(where <refmodel> is an object resulting from init_refmodel()).

extra-families Extra family objects

Description

Family objects not in the set of default family objects.

Usage

Student_t(link = "identity", nu = 3)

Arguments

link Name of the link function. In contrast to the default family objects, this has to
be a character string here.

nu Degrees of freedom for the Student-t distribution.

Value

A family object analogous to those described in family.

force_search_terms 29

Note

Support for the Student_t() family is still experimental.

force_search_terms Force search terms

Description

A helper function to construct the input for argument search_terms of varsel() or cv_varsel()
if certain predictor terms should be forced to be selected first whereas other predictor terms are
optional (i.e., they are subject to the variable selection, but only after the inclusion of the "forced"
terms).

Usage

force_search_terms(forced_terms, optional_terms)

Arguments

forced_terms A character vector of predictor terms that should be selected first.

optional_terms A character vector of predictor terms that should be subject to the variable se-
lection after the inclusion of the "forced" terms.

Value

A character vector that may be used as input for argument search_terms of varsel() or cv_varsel().

See Also

varsel(), cv_varsel()

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

We will force X1 and X2 to be selected first:
search_terms_forced <- force_search_terms(

forced_terms = paste0("X", 1:2),
optional_terms = paste0("X", 3:5)

30 mesquite

)

Run varsel() (here without cross-validation and with small values for
`nterms_max`, `nclusters`, and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, nclusters = 5, nclusters_pred = 10,

search_terms = search_terms_forced, seed = 5555)
Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

mesquite Mesquite data set

Description

The mesquite bushes yields dataset from Gelman and Hill (2006) (https://sites.stat.columbia.
edu/gelman/arm/).

Usage

mesquite

Format

The response variable is the total weight (in grams) of photosynthetic material as derived from
actual harvesting of the bush. The predictor variables are:

diam1 diameter of the canopy (the leafy area of the bush) in meters, measured along the longer
axis of the bush.

diam2 canopy diameter measured along the shorter axis.

canopy height height of the canopy.

total height total height of the bush.

density plant unit density (# of primary stems per plant unit).

group group of measurements (0 for the first group, 1 for the second group).

Source

https://sites.stat.columbia.edu/gelman/arm/examples/mesquite/mesquite.dat

References

Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511790942.

https://sites.stat.columbia.edu/gelman/arm/
https://sites.stat.columbia.edu/gelman/arm/
https://sites.stat.columbia.edu/gelman/arm/examples/mesquite/mesquite.dat
https://doi.org/10.1017/CBO9780511790942

performances 31

performances Predictive performance results

Description

Retrieves the predictive performance summaries after running varsel() or cv_varsel(). These
summaries are computed by summary.vsel(), so the main method of performances() is performances.vselsummary()
(objects of class vselsummary are returned by summary.vsel()). As a shortcut method, performances.vsel()
is provided as well (objects of class vsel are returned by varsel() and cv_varsel()). For a graph-
ical representation, see plot.vsel().

Usage

performances(object, ...)

S3 method for class 'vselsummary'
performances(object, ...)

S3 method for class 'vsel'
performances(object, ...)

Arguments

object The object from which to retrieve the predictive performance results. Possible
classes may be inferred from the names of the corresponding methods (see also
the description).

... For performances.vsel(): arguments passed to summary.vsel(). For performances.vselsummary():
currently ignored.

Value

An object of class performances which is a list with the following elements:

• submodels: The predictive performance results for the submodels, as a data.frame.

• reference_model: The predictive performance results for the reference model, as a named
vector.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

32 plot.cv_proportions

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)
print(performances(vs))

plot.cv_proportions Plot ranking proportions from fold-wise predictor rankings

Description

Plots the ranking proportions (see cv_proportions()) from the fold-wise predictor rankings in a
cross-validation with fold-wise searches. This is a visualization of the transposed matrix returned
by cv_proportions(). The proportions printed as text inside of the colored tiles are rounded to
whole percentage points (the plotted proportions themselves are not rounded).

Usage

S3 method for class 'cv_proportions'
plot(
x,
text_angle = getOption("projpred.plot_cv_proportions_text_angle", NULL),
...

)

S3 method for class 'ranking'
plot(x, ...)

Arguments

x For plot.cv_proportions(): an object of class cv_proportions (returned by
cv_proportions(), possibly with cumulate = TRUE). For plot.ranking(): an
object of class ranking (returned by ranking()) that cv_proportions() will
be applied to internally before then calling plot.cv_proportions().

text_angle Passed to argument angle of ggplot2::element_text() for the y-axis tick
labels. In case of long predictor names, text_angle = 45 might be helpful (for
example).

... For plot.ranking(): arguments passed to cv_proportions.ranking() and
plot.cv_proportions(). For plot.cv_proportions(): currently ignored.

Value

A ggplot2 plotting object (of class gg and ggplot).

plot.vsel 33

Author(s)

Idea and original code by Aki Vehtari. Slight modifications of the original code by Frank Weber,
Yann McLatchie, and Sölvi Rögnvaldsson. Final implementation in projpred by Frank Weber.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 1000, refresh = 0, seed = 9876

)

Run cv_varsel() (with L1 search and small values for `K`, `nterms_max`, and
`nclusters_pred`, but only for the sake of speed in this example; this is
not recommended in general):
cvvs <- cv_varsel(fit, method = "L1", cv_method = "kfold", K = 2,

nterms_max = 3, nclusters_pred = 10, seed = 5555)

Extract predictor rankings:
rk <- ranking(cvvs)

Compute ranking proportions:
pr_rk <- cv_proportions(rk)

Visualize the ranking proportions:
gg_pr_rk <- plot(pr_rk)
print(gg_pr_rk)

Since the object returned by plot.cv_proportions() is a standard ggplot2
plotting object, you can modify the plot easily, e.g., to remove the
legend:
print(gg_pr_rk + ggplot2::theme(legend.position = "none"))

plot.vsel Plot predictive performance

Description

This is the plot() method for vsel objects (returned by varsel() or cv_varsel()). It visualizes
the predictive performance of the reference model (possibly also that of some other "baseline"
model) and that of the submodels along the full-data predictor ranking. Basic information about
the (CV) variability in the ranking of the predictors is included as well (if available; inferred from
cv_proportions()). For a tabular representation, see summary.vsel() and performances().

34 plot.vsel

Usage

S3 method for class 'vsel'
plot(
x,
nterms_max = NULL,
stats = "elpd",
deltas = FALSE,
alpha = 2 * pnorm(-1),
baseline = if (!inherits(x$refmodel, "datafit")) "ref" else "best",
thres_elpd = NA,
resp_oscale = TRUE,
point_size = getOption("projpred.plot_vsel_point_size", 3),
bar_thickness = getOption("projpred.plot_vsel_bar_thickness", 1),
ranking_nterms_max = getOption("projpred.plot_vsel_ranking_nterms_max", NULL),
ranking_abbreviate = getOption("projpred.plot_vsel_ranking_abbreviate", FALSE),
ranking_abbreviate_args = getOption("projpred.plot_vsel_ranking_abbreviate_args",

list()),
ranking_repel = getOption("projpred.plot_vsel_ranking_repel", NULL),
ranking_repel_args = getOption("projpred.plot_vsel_ranking_repel_args", list()),
ranking_colored = getOption("projpred.plot_vsel_ranking_colored", FALSE),
show_cv_proportions = getOption("projpred.plot_vsel_show_cv_proportions", FALSE),
cumulate = FALSE,
text_angle = getOption("projpred.plot_vsel_text_angle", 45),
size_position = getOption("projpred.plot_vsel_size_position", "primary_x_top"),
...

)

Arguments

x An object of class vsel (returned by varsel() or cv_varsel()).

nterms_max Maximum submodel size (number of predictor terms) for which the performance
statistics are calculated. Using NULL is effectively the same as length(ranking(object)$fulldata).
Note that nterms_max does not count the intercept, so use nterms_max = 0 for
the intercept-only model. For plot.vsel(), nterms_max must be at least 1.

stats One or more character strings determining which performance statistics (i.e.,
utilities or losses) to estimate based on the observations in the evaluation (or
"test") set (in case of cross-validation, these are all observations because they
are partitioned into multiple test sets; in case of varsel() with d_test = NULL,
these are again all observations because the test set is the same as the training
set). Available statistics are:

• "elpd": expected log (pointwise) predictive density (for a new dataset)
(ELPD). Estimated by the sum of the observation-specific log predictive
density values (with each of these predictive density values being a—possibly
weighted—average across the parameter draws). For the corresponding un-
certainty interval, a normal approximation is used.

• "mlpd": mean log predictive density (MLPD), that is, the ELPD divided by
the number of observations. For the corresponding uncertainty interval, a

plot.vsel 35

normal approximation is used.

• "gmpd": geometric mean predictive density (GMPD), that is, exp() of the
MLPD. The GMPD is especially helpful for discrete response families (be-
cause there, the GMPD is bounded by zero and one). For the correspond-
ing standard error, the delta method is used. The corresponding uncertainty
interval type is "exponentiated normal approximation" because the uncer-
tainty interval bounds are the exponentiated uncertainty interval bounds of
the MLPD.

• "mse": mean squared error (only available in the situations mentioned in
section "Details" below). For the corresponding uncertainty interval, a log-
normal approximation is used if deltas is FALSE and a normal approxima-
tion is used if deltas is TRUE (or "mixed", in case of plot.vsel()).

• "rmse": root mean squared error (only available in the situations mentioned
in section "Details" below). For the corresponding standard error, the delta
method is used. For the corresponding uncertainty interval, a log-normal
approximation is used if deltas is FALSE and a normal approximation is
used if deltas is TRUE (or "mixed", in case of plot.vsel()).

• "R2": R-squared, i.e., coefficient of determination (only available in the
situations mentioned in section "Details" below). For the corresponding
standard error, the delta method is used. For the corresponding uncertainty
interval, a normal approximation is used.

• "acc" (or its alias, "pctcorr"): classification accuracy (only available in
the situations mentioned in section "Details" below). By "classification ac-
curacy", we mean the proportion of correctly classified observations. For
this, the response category ("class") with highest probability (the proba-
bilities are model-based) is taken as the prediction ("classification") for an
observation. For the corresponding uncertainty interval, a normal approxi-
mation is used.

• "auc": area under the ROC curve (only available in the situations men-
tioned in section "Details" below). For the corresponding standard error
and lower and upper uncertainty interval bounds, bootstrapping is used. Not
supported in case of subsampled LOO-CV (see argument nloo of cv_varsel()).

deltas May be set to FALSE, TRUE, or "mixed". If FALSE, the submodel performance
statistics are plotted on their actual scale and the uncertainty bars match this
scale. If TRUE, the submodel statistics are plotted relatively to the baseline model
(see argument baseline) and the uncertainty bars match this scale. For the
GMPD, the term "relatively" refers to the ratio vs. the baseline model (i.e., the
submodel statistic divided by the baseline model statistic). For all other stats,
"relatively" refers to the difference from the baseline model (i.e., the submodel
statistic minus the baseline model statistic). If set to "mixed", the deltas =
FALSE point estimates are combined with the uncertainty bars from the deltas
= TRUE plot.

alpha A number determining the (nominal) coverage 1 - alpha of the uncertainty in-
tervals. For example, in case of a normal-approximation uncertainty interval,
alpha = 2 * pnorm(-1) corresponds to a uncertainty interval stretching by one
standard error on either side of the point estimate.

36 plot.vsel

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref" or "best", indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively. In case of subsampled LOO-CV, baseline = "best" is not supported.

thres_elpd Only relevant if any(stats %in% c("elpd", "mlpd", "gmpd")). The thresh-
old for the ELPD difference (taking the submodel’s ELPD minus the baseline
model’s ELPD) above which the submodel’s ELPD is considered to be close
enough to the baseline model’s ELPD. An equivalent rule is applied in case of
the MLPD and the GMPD. See suggest_size() for a formalization. Supplying
NA deactivates this.

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to calculate the performance statistics on the original response scale (TRUE) or
on latent scale (FALSE).

point_size Passed to argument size of ggplot2::geom_point() and controls the size of
the points.

bar_thickness Passed to argument linewidth of ggplot2::geom_linerange() and controls
the thickness of the uncertainty bars.

ranking_nterms_max

Maximum submodel size (number of predictor terms) for which the predictor
names and the corresponding ranking proportions are added on the x-axis. Using
NULL is effectively the same as using nterms_max. Using NA causes the predictor
names and the corresponding ranking proportions to be omitted, which requires
size_position = "primary_x_bottom". Note that ranking_nterms_max does
not count the intercept, so ranking_nterms_max = 1 corresponds to the sub-
model consisting of the first (non-intercept) predictor term.

ranking_abbreviate

A single logical value indicating whether the predictor names in the full-data
predictor ranking should be abbreviated by abbreviate() (TRUE) or not (FALSE).
See also argument ranking_abbreviate_args and section "Value".

ranking_abbreviate_args

A list of arguments (except for names.arg) to be passed to abbreviate() in
case of ranking_abbreviate = TRUE.

ranking_repel Either NULL, "text", or "label". By NULL, the full-data predictor ranking and
the corresponding ranking proportions are placed below the x-axis. By "text"
or "label", they are placed within the plotting area, using ggrepel::geom_text_repel()
or ggrepel::geom_label_repel(), respectively. See also argument ranking_repel_args.

ranking_repel_args

A list of arguments (except for mapping) to be passed to ggrepel::geom_text_repel()
or ggrepel::geom_label_repel() in case of ranking_repel = "text" or ranking_repel
= "label", respectively.

ranking_colored

A single logical value indicating whether the points and the uncertainty bars
should be gradient-colored according to the CV ranking proportions (TRUE, cur-
rently only works if show_cv_proportions is TRUE as well) or not (FALSE). The
CV ranking proportions may be cumulated (see argument cumulate). Note that
the point and the uncertainty bar at submodel size 0 (i.e., at the intercept-only

plot.vsel 37

model) are always colored in gray because the intercept is forced to be selected
before any predictors are selected (in other words, the reason is that for sub-
model size 0, the question of variability across CV folds is not appropriate in
the first place).

show_cv_proportions

A single logical value indicating whether the CV ranking proportions (see cv_proportions())
should be displayed (TRUE) or not (FALSE).

cumulate Passed to argument cumulate of cv_proportions(). Affects the ranking pro-
portions given on the x-axis (below the full-data predictor ranking).

text_angle Passed to argument angle of ggplot2::element_text() for the x-axis tick la-
bels. Note that the default of argument angle in ggplot2::element_text()
is NULL (which implies no rotation) whereas we use a default of text_angle =
45 here. If text_angle > 0 (< 0), the x-axis text is automatically right-aligned
(left-aligned). If -90 < text_angle && text_angle < 90 && text_angle != 0,
the x-axis text is also top-aligned. When controlling text_angle via global op-
tion projpred.plot_vsel_text_angle, keep in mind that a global option set
to NULL is treated like an unset global option, so options(projpred.plot_vsel_text_angle
= NULL) would result in text_angle = 45, not text_angle = 0.

size_position A single character string specifying the position of the submodel sizes. Either
"primary_x_bottom" for including them in the x-axis tick labels, "primary_x_top"
for putting them above the x-axis (the current default), or "secondary_x" for
putting them into a secondary x-axis. Currently, "primary_x_top" and "secondary_x"
may not be combined with ranking_nterms_max = NA (i.e., only "primary_x_bottom"
works with ranking_nterms_max = NA).

... Arguments passed to the internal function which is used for bootstrapping (if
applicable; see argument stats). Currently, relevant arguments are B (the num-
ber of bootstrap samples, defaulting to 2000) and seed (see set.seed(), but
defaulting to NA so that set.seed() is not called within that function at all).

Details

The stats options "mse", "rmse", and "R2" are only available for:

• the traditional projection,

• the latent projection with resp_oscale = FALSE,

• the latent projection with resp_oscale = TRUE in combination with <refmodel>$family$cats
being NULL.

The stats option "acc" (= "pctcorr") is only available for:

• the binomial() family in case of the traditional projection,

• all families in case of the augmented-data projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL,

• all families (on the original response scale) in case of the latent projection with resp_oscale
= TRUE in combination with <refmodel>$family$cats being not NULL.

38 plot.vsel

The stats option "auc" is only available for:

• the binomial() family in case of the traditional projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL.

Note that the stats option "auc" is not supported in case of subsampled LOO-CV (see argument
nloo of cv_varsel()).

Value

A ggplot2 plotting object (of class gg and ggplot). If ranking_abbreviate is TRUE, the output
of abbreviate() is stored in an attribute called projpred_ranking_abbreviated (to allow the
abbreviations to be easily mapped back to the original predictor names).

Horizontal lines

As long as the reference model’s performance is computable, it is always shown in the plot as a
dashed red horizontal line. If baseline = "best", the baseline model’s performance is shown as
a dotted black horizontal line. If !is.na(thres_elpd) and any(stats %in% c("elpd", "mlpd",
"gmpd")), the value supplied to thres_elpd (which is automatically adapted internally in case
of the MLPD or the GMPD or deltas = FALSE or deltas = "mixed") is shown as a dot-dashed
gray horizontal line for the reference model and, if baseline = "best", as a long-dashed green
horizontal line for the baseline model.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)
print(plot(vs))

pred-projection 39

pred-projection Predictions from a submodel (after projection)

Description

After the projection of the reference model onto a submodel, the linear predictors (for the original
or a new dataset) based on that submodel can be calculated by proj_linpred(). These linear
predictors can also be transformed to response scale and averaged across the projected parameter
draws. Furthermore, proj_linpred() returns the corresponding log predictive density values if
the (original or new) dataset contains response values. The proj_predict() function draws from
the predictive distributions (there is one such distribution for each observation from the original or
new dataset) of the submodel that the reference model has been projected onto. If the projection
has not been performed yet, both functions call project() internally to perform the projection.
Both functions can also handle multiple submodels at once (for objects of class vsel or objects
returned by a project() call to an object of class vsel; see project()).

Usage

proj_linpred(
object,
newdata = NULL,
offsetnew = NULL,
weightsnew = NULL,
filter_nterms = NULL,
transform = FALSE,
integrated = FALSE,
allow_nonconst_wdraws_prj = return_draws_matrix,
return_draws_matrix = FALSE,
.seed = NA,
...

)

proj_predict(
object,
newdata = NULL,
offsetnew = NULL,
weightsnew = NULL,
filter_nterms = NULL,
nresample_clusters = 1000,
return_draws_matrix = FALSE,
.seed = NA,
resp_oscale = TRUE,
...

)

40 pred-projection

Arguments

object An object returned by project() or an object that can be passed to argument
object of project().

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL for using the
original dataset. If not NULL, any NAs will trigger an error.

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

filter_nterms Only applies if object is an object returned by project(). In that case, filter_nterms
can be used to filter object for only those elements (submodels) with a number
of predictor terms in filter_nterms. Therefore, needs to be a numeric vector
or NULL. If NULL, use all submodels.

transform For proj_linpred() only. A single logical value indicating whether the linear
predictor should be transformed to response scale using the inverse-link function
(TRUE) or not (FALSE). In case of the latent projection, argument transform is
similar in spirit to argument resp_oscale from other functions and affects the
scale of both output elements pred and lpd (see sections "Details" and "Value"
below).

integrated For proj_linpred() only. A single logical value indicating whether the output
should be averaged across the projected posterior draws (TRUE) or not (FALSE).

allow_nonconst_wdraws_prj

Only relevant for proj_linpred() and only if integrated is FALSE. A single
logical value indicating whether to allow projected draws with different (i.e.,
nonconstant) weights (TRUE) or not (FALSE). If return_draws_matrix is TRUE,
allow_nonconst_wdraws_prj is internally set to TRUE as well. CAUTION:
Expert use only because if set to TRUE, the weights of the projected draws are
stored in attributes wdraws_prj and handling these attributes requires special
care (e.g., when subsetting the returned matrices).

return_draws_matrix

A single logical value indicating whether to return an object (in case of proj_predict())
or objects (in case of proj_linpred()) of class draws_matrix (see posterior::draws_matrix()).
In case of proj_linpred() and projected draws with nonconstant weights (as
well as integrated being FALSE), posterior::weight_draws() is applied in-
ternally.

.seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling proj_linpred() or proj_predict()) upon exiting
proj_linpred() or proj_predict(). Here, .seed is used for drawing new
group-level effects in case of a multilevel submodel (however, not yet in case of

pred-projection 41

a GAMM) and for drawing from the predictive distributions of the submodel(s)
in case of proj_predict(). If a clustered projection was performed, then in
proj_predict(), .seed is also used for drawing from the set of projected clus-
ters of posterior draws (see argument nresample_clusters). If project() is
called internally with seed = NA (or with seed being a lazily evaluated expres-
sion that uses the PRNG), then .seed also affects the PRNG usage there.

... Arguments passed to project() if object is not already an object returned by
project().

nresample_clusters

For proj_predict() with clustered projection (and nonconstant weights for
the projected draws) only. Number of draws to return from the predictive dis-
tributions of the submodel(s). Not to be confused with argument nclusters
of project(): nresample_clusters gives the number of draws (with replace-
ment) from the set of clustered posterior draws after projection (with this set
being determined by argument nclusters of project()).

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to draw from the posterior-projection predictive distributions on the original re-
sponse scale (TRUE) or on latent scale (FALSE).

Details

Currently, proj_predict() ignores observation weights that are not equal to 1. A corresponding
warning is thrown if this is the case.

In case of the latent projection and transform = FALSE:

• Output element pred contains the linear predictors without any modifications that may be
due to the original response distribution (e.g., for a brms::cumulative() model, the ordered
thresholds are not taken into account).

• Output element lpd contains the latent log predictive density values, i.e., those corresponding
to the latent Gaussian distribution. If newdata is not NULL, this requires the latent response val-
ues to be supplied in a column called .<response_name> of newdata where <response_name>
needs to be replaced by the name of the original response variable (if <response_name> con-
tained parentheses, these have been stripped off by init_refmodel(); see the left-hand side
of formula(<refmodel>)). For technical reasons, the existence of column <response_name>
in newdata is another requirement (even though .<response_name> is actually used).

Value

In the following, Sprj, N , Ccat, and Clat from help topic refmodel-init-get are used. (For proj_linpred()
with integrated = TRUE, we have Sprj = 1.) Furthermore, let C denote either Ccat (if transform
= TRUE) or Clat (if transform = FALSE). Then, if the prediction is done for one submodel only (i.e.,
length(nterms) == 1 || !is.null(predictor_terms) in the explicit or implicit call to project(),
see argument object):

• proj_linpred() returns a list with the following elements:

– Element pred contains the actual predictions, i.e., the linear predictors, possibly trans-
formed to response scale (depending on argument transform).

42 pred-projection

– Element lpd is non-NULL only if newdata is NULL or if newdata contains response values
in the corresponding column. In that case, it contains the log predictive density values
(conditional on each of the projected parameter draws if integrated = FALSE and aver-
aged across the projected parameter draws if integrated = TRUE).

In case of (i) the traditional projection, (ii) the latent projection with transform = FALSE,
or (iii) the latent projection with transform = TRUE and <refmodel>$family$cats (where
<refmodel> is an object resulting from init_refmodel(); see also extend_family()’s ar-
gument latent_y_unqs) being NULL, both elements are Sprj ×N matrices (converted to a—
possibly weighted—draws_matrix if argument return_draws_matrix is TRUE, see the de-
scription of this argument). In case of (i) the augmented-data projection or (ii) the latent pro-
jection with transform = TRUE and <refmodel>$family$cats being not NULL, pred is an
Sprj ×N × C array (if argument return_draws_matrix is TRUE, this array is "compressed"
to an Sprj × (N · C) matrix—with the columns consisting of C blocks of N rows—and then
converted to a—possibly weighted—draws_matrix) and lpd is an Sprj×N matrix (converted
to a—possibly weighted—draws_matrix if argument return_draws_matrix is TRUE). If
return_draws_matrix is FALSE and allow_nonconst_wdraws_prj is TRUE and integrated
is FALSE and the projected draws have nonconstant weights, then both list elements have
the weights of these draws stored in an attribute wdraws_prj. (If return_draws_matrix,
allow_nonconst_wdraws_prj, and integrated are all FALSE, then projected draws with
nonconstant weights cause an error.)

• proj_predict() returns an Sprj×N matrix of predictions where Sprj denotes nresample_clusters
in case of clustered projection (or, more generally, in case of projected draws with nonconstant
weights). If argument return_draws_matrix is TRUE, the returned matrix is converted to a
draws_matrix (see posterior::draws_matrix()). In case of (i) the augmented-data pro-
jection or (ii) the latent projection with resp_oscale = TRUE and <refmodel>$family$cats
being not NULL, the returned matrix (or draws_matrix) has an attribute called cats (the char-
acter vector of response categories) and the values of the matrix (or draws_matrix) are the
predicted indices of the response categories (these indices refer to the order of the response
categories from attribute cats).

If the prediction is done for more than one submodel, the output from above is returned for each
submodel, giving a named list with one element for each submodel (the names of this list being
the numbers of predictor terms of the submodels when counting the intercept, too).

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `ndraws`, but only for the sake of speed in this example; this
is not recommended in general):

predict.refmodel 43

prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), ndraws = 21,
seed = 9182)

Predictions (at the training points) from the submodel onto which the
reference model was projected:
prjl <- proj_linpred(prj)
prjp <- proj_predict(prj, .seed = 7364)

predict.refmodel Predictions or log posterior predictive densities from a reference
model

Description

This is the predict() method for refmodel objects (returned by get_refmodel() or init_refmodel()).
It offers three types of output which are all based on the reference model and new (or old) observa-
tions: Either the linear predictor on link scale, the linear predictor transformed to response scale, or
the log posterior predictive density.

Usage

S3 method for class 'refmodel'
predict(
object,
newdata = NULL,
ynew = NULL,
offsetnew = NULL,
weightsnew = NULL,
type = "response",
...

)

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel()).

newdata Passed to argument newdata of the reference model’s extract_model_data
function (see init_refmodel()). Provides the predictor (and possibly also the
response) data for the new (or old) observations. May also be NULL for using the
original dataset. If not NULL, any NAs will trigger an error.

ynew If not NULL, then this needs to be a vector of new (or old) response values.
See also section "Value" below. In case of (i) the augmented-data projection
or (ii) the latent projection with type = "response" and object$family$cats
being not NULL, ynew is internally coerced to a factor (using as.factor()).
The levels of this factor have to be a subset of object$family$cats (see
extend_family()’s arguments augdat_y_unqs and latent_y_unqs, respec-
tively).

44 predict.refmodel

offsetnew Passed to argument orhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the offsets for the new (or old) obser-
vations.

weightsnew Passed to argument wrhs of the reference model’s extract_model_data func-
tion (see init_refmodel()). Used to get the weights for the new (or old) ob-
servations.

type Usually only relevant if is.null(ynew), but for the latent projection, this also
affects the !is.null(ynew) case (see below). The scale on which the pre-
dictions are returned, either "link" or "response" (see predict.glm() but
note that predict.refmodel() does not adhere to the typical R convention
of a default prediction on link scale). For both scales, the predictions are av-
eraged across the posterior draws. In case of the latent projection, argument
type is similar in spirit to argument resp_oscale from other functions: If (i)
is.null(ynew), then argument type affects the predictions as described above.
In that case, note that type = "link" yields the linear predictors without any
modifications that may be due to the original response distribution (e.g., for a
brms::cumulative() model, the ordered thresholds are not taken into account).
If (ii) !is.null(ynew), then argument type also affects the scale of the log pos-
terior predictive densities (type = "response" for the original response scale,
type = "link" for the latent Gaussian scale).

... Currently ignored.

Details

Argument weightsnew is only relevant if !is.null(ynew).

In case of a multilevel reference model, group-level effects for new group levels are drawn randomly
from a (multivariate) Gaussian distribution. When setting projpred.mlvl_pred_new to TRUE, all
group levels from newdata (even those that already exist in the original dataset) are treated as new
group levels (if is.null(newdata), all group levels from the original dataset are considered as new
group levels in that case).

Value

In the following, N , Ccat, and Clat from help topic refmodel-init-get are used. Furthermore, let C
denote either Ccat (if type = "response") or Clat (if type = "link"). Then, if is.null(ynew), the
returned object contains the reference model’s predictions (with the scale depending on argument
type) as:

• a length-N vector in case of (i) the traditional projection, (ii) the latent projection with type
= "link", or (iii) the latent projection with type = "response" and object$family$cats
being NULL;

• an N ×C matrix in case of (i) the augmented-data projection or (ii) the latent projection with
type = "response" and object$family$cats being not NULL.

If !is.null(ynew), the returned object is a length-N vector of log posterior predictive densities
evaluated at ynew.

predictor_terms 45

predictor_terms Predictor terms used in a project() run

Description

For a projection object (returned by project(), possibly as elements of a list), this function
extracts the combination of predictor terms onto which the projection was performed.

Usage

predictor_terms(object, ...)

S3 method for class 'projection'
predictor_terms(object, ...)

Arguments

object An object of class projection (returned by project(), possibly as elements
of a list) from which to retrieve the predictor terms.

... Currently ignored.

Value

A character vector of predictor terms.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)
print(predictor_terms(prj)) # gives `c("X1", "X3", "X5")`

46 print.refmodel

print.projection Print information about project() output

Description

This is the print() method for objects of class projection. This method mainly exists to avoid
cluttering the console when printing such objects accidentally.

Usage

S3 method for class 'projection'
print(x, ...)

Arguments

x An object of class projection (returned by project(), possibly as elements
of a list).

... Currently ignored.

Value

The input object x (invisible).

print.refmodel Print information about a reference model object

Description

This is the print() method for reference model objects (objects of class refmodel). This method
mainly exists to avoid cluttering the console when printing such objects accidentally.

Usage

S3 method for class 'refmodel'
print(x, ...)

Arguments

x An object of class refmodel (returned by get_refmodel() or init_refmodel()).

... Currently ignored.

Value

The input object x (invisible).

print.vsel 47

print.vsel Print results (summary) of a varsel() or cv_varsel() run

Description

This is the print() method for vsel objects (returned by varsel() or cv_varsel()). It dis-
plays a summary of a varsel() or cv_varsel() run by first calling summary.vsel() and then
print.vselsummary().

Usage

S3 method for class 'vsel'
print(x, digits = getOption("projpred.digits", 2), ...)

Arguments

x An object of class vsel (returned by varsel() or cv_varsel()).

digits Passed to argument digits of print.vselsummary().

... Arguments passed to summary.vsel().

Value

The output of summary.vsel() (invisible).

print.vselsummary Print summary of a varsel() or cv_varsel() run

Description

This is the print() method for summary objects created by summary.vsel(). It displays a sum-
mary of the results from a varsel() or cv_varsel() run.

Usage

S3 method for class 'vselsummary'
print(x, digits = getOption("projpred.digits", 2), ...)

Arguments

x An object of class vselsummary.

digits Passed to print.data.frame() (for the table containing the submodel perfor-
mance evaluation results) and print.default() (for the vector containing the
reference model performance evaluation results).

... Arguments passed to print.data.frame() (for the table containing the sub-
model performance evaluation results) and print.default() (for the vector
containing the reference model performance evaluation results).

48 project

Details

In the submodel predictive performance table printed at (or towards) the bottom, column ranking_fulldata
contains the full-data predictor ranking and column cv_proportions_diag contains the main di-
agonal of the matrix returned by cv_proportions() (with cumulate as set in the summary.vsel()
call that created x). To retrieve the fold-wise predictor rankings, use the ranking() function, pos-
sibly followed by cv_proportions() for computing the ranking proportions (which can be visual-
ized by plot.cv_proportions()).

Value

The output of summary.vsel() (invisible).

project Projection onto submodel(s)

Description

Project the posterior of the reference model onto the parameter space of a single submodel con-
sisting of a specific combination of predictor terms or (after variable selection) onto the parameter
space of a single or multiple submodels of specific sizes.

Usage

project(
object,
nterms = NULL,
solution_terms = predictor_terms,
predictor_terms = NULL,
refit_prj = TRUE,
ndraws = 400,
nclusters = NULL,
seed = NA,
verbose = getOption("projpred.verbose", as.integer(interactive())),
...

)

Arguments

object An object which can be used as input to get_refmodel() (in particular, objects
of class refmodel).

nterms Only relevant if object is of class vsel (returned by varsel() or cv_varsel()).
Ignored if !is.null(predictor_terms). Number of terms for the submodel
(the corresponding combination of predictor terms is taken from object). If a
numeric vector, then the projection is performed for each element of this vec-
tor. If NULL (and is.null(predictor_terms)), then the value suggested by
suggest_size() is taken (with default arguments for suggest_size(), imply-
ing that this suggested size is based on the ELPD). Note that nterms does not
count the intercept, so use nterms = 0 for the intercept-only model.

project 49

solution_terms Deprecated. Please use argument predictor_terms instead.
predictor_terms

If not NULL, then this needs to be a character vector of predictor terms for the
submodel onto which the projection will be performed. Argument nterms is ig-
nored in that case. For an object which is not of class vsel, predictor_terms
must not be NULL.

refit_prj A single logical value indicating whether to fit the submodels (again) (TRUE)
or—if object is of class vsel—to re-use the submodel fits from the full-data
search that was run when creating object (FALSE). For an object which is not
of class vsel, refit_prj must be TRUE. See also section "Details" below.

ndraws Only relevant if refit_prj is TRUE. Number of posterior draws to be projected.
Ignored if nclusters is not NULL or if the reference model is of class datafit
(in which case one cluster is used). If both (nclusters and ndraws) are NULL,
the number of posterior draws from the reference model is used for ndraws. See
also section "Details" below.

nclusters Only relevant if refit_prj is TRUE. Number of clusters of posterior draws to
be projected. Ignored if the reference model is of class datafit (in which case
one cluster is used). For the meaning of NULL, see argument ndraws. See also
section "Details" below.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling project()) upon exiting project(). Here, seed is
used for clustering the reference model’s posterior draws (if !is.null(nclusters))
and for drawing new group-level effects when predicting from a multilevel sub-
model (however, not yet in case of a GAMM) and having global option projpred.mlvl_pred_new
set to TRUE. (Such a prediction takes place when calculating output elements dis
and ce.)

verbose A single integer value from the set {0, 1, 2} (if !is.null(predictor_terms),
1 and 2 have the same effect), indicating how much information (if any) to
print out during the computations. Higher values indicate that more informa-
tion should be printed, 0 deactivates the verbose mode. Internally, argument
verbose is coerced to integer via as.integer(), so technically, a single logical
value or a single numeric value work as well.

... Arguments passed to get_refmodel() (if get_refmodel() is actually used;
see argument object) as well as to the divergence minimizer (if refit_prj is
TRUE).

Details

Arguments ndraws and nclusters are automatically truncated at the number of posterior draws
in the reference model (which is 1 for datafits). Using less draws or clusters in ndraws or
nclusters than posterior draws in the reference model may result in slightly inaccurate projec-
tion performance. Increasing these arguments affects the computation time linearly.

If refit_prj = FALSE (which is only possible if object is of class vsel), project() retrieves the
submodel fits from the full-data search that was run when creating object. Usually, the search

50 project

relies on a rather coarse clustering or thinning of the reference model’s posterior draws (by default,
varsel() and cv_varsel() use nclusters = 20). Consequently, project() with refit_prj =
FALSE then inherits this coarse clustering or thinning.

Value

If the projection is performed onto a single submodel (i.e., length(nterms) == 1 || !is.null(predictor_terms)),
an object of class projection which is a list containing the following elements:

dis Projected draws for the dispersion parameter.

ce The cross-entropy part of the Kullback-Leibler (KL) divergence from the reference model to
the submodel. For some families, this is not the actual cross-entropy, but a reduced one where
terms which would cancel out when calculating the KL divergence have been dropped. In
case of the Gaussian family, that reduced cross-entropy is further modified, yielding merely a
proxy.

wdraws_prj Weights for the projected draws.

predictor_terms A character vector of the submodel’s predictor terms.

outdmin A list containing the submodel fits (one fit per projected draw). This is the same as the
return value of the div_minimizer function (see init_refmodel()), except if project()
was used with an object of class vsel based on an L1 search as well as with refit_prj =
FALSE, in which case this is the output from an internal L1-penalized divergence minimizer.

cl_ref A numeric vector of length equal to the number of posterior draws in the reference model,
containing the cluster indices of these draws.

wdraws_ref A numeric vector of length equal to the number of posterior draws in the reference
model, giving the weights of these draws. These weights should be treated as not being nor-
malized (i.e., they don’t necessarily sum to 1).

const_wdraws_prj A single logical value indicating whether the projected draws have constant
weights (TRUE) or not (FALSE).

refmodel The reference model object.

If the projection is performed onto more than one submodel, the output from above is returned for
each submodel, giving a list with one element for each submodel.

The elements of an object of class projection are not meant to be accessed directly but instead via
helper functions (see the main vignette and projpred-package; see also as_draws_matrix.projection(),
argument return_draws_matrix of proj_linpred(), and argument nresample_clusters of proj_predict()
for the intended use of the weights stored in element wdraws_prj).

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

ranking 51

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)

Projection onto the best submodel with 2 predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj_from_vs <- project(vs, nterms = 2, nclusters = 10, seed = 9182)

Projection onto an arbitrary combination of predictor terms (with a small
value for `nclusters`, but only for the sake of speed in this example;
this is not recommended in general):
prj <- project(fit, predictor_terms = c("X1", "X3", "X5"), nclusters = 10,

seed = 9182)

ranking Predictor ranking(s)

Description

Extracts the predictor ranking(s) from an object of class vsel (returned by varsel() or cv_varsel()).
A predictor ranking is simply a character vector of predictor terms ranked by predictive relevance
(with the most relevant term first). In any case, objects of class vsel contain the predictor ranking
based on the full-data search. If an object of class vsel is based on a cross-validation (CV) with
fold-wise searches (i.e., if it was created by cv_varsel() with validate_search = TRUE), then it
also contains fold-wise predictor rankings.

Usage

ranking(object, ...)

S3 method for class 'vsel'
ranking(object, nterms_max = NULL, ...)

Arguments

object The object from which to retrieve the predictor ranking(s). Possible classes
may be inferred from the names of the corresponding methods (see also the
description).

... Currently ignored.

nterms_max Maximum submodel size (number of predictor terms) for the predictor rank-
ing(s), i.e., the submodel size at which to cut off the predictor ranking(s). Using
NULL is effectively the same as setting nterms_max to the full model size, i.e.,

52 refmodel-init-get

this means to not cut off the predictor ranking(s) at all. Note that nterms_max
does not count the intercept, so nterms_max = 1 corresponds to the submodel
consisting of the first (non-intercept) predictor term.

Value

An object of class ranking which is a list with the following elements:

• fulldata: The predictor ranking from the full-data search.

• foldwise: The predictor rankings from the fold-wise searches in the form of a character
matrix (only available if object is based on a CV with fold-wise searches, otherwise element
foldwise is NULL). The rows of this matrix correspond to the CV folds and the columns to the
submodel sizes. Each row contains the predictor ranking from the search of that CV fold.

See Also

cv_proportions()

Examples

For an example, see `?plot.cv_proportions`.

refmodel-init-get Reference model and more general information

Description

Function get_refmodel() is a generic function whose methods usually call init_refmodel()
which is the underlying workhorse (and may also be used directly without a call to get_refmodel()).

Both, get_refmodel() and init_refmodel(), create an object containing information needed for
the projection predictive variable selection, namely about the reference model, the submodels, and
how the projection should be carried out. For the sake of simplicity, the documentation may refer
to the resulting object also as "reference model" or "reference model object", even though it also
contains information about the submodels and the projection.

A "typical" reference model object is created by get_refmodel.stanreg() and brms::get_refmodel.brmsfit(),
either implicitly by a call to a top-level function such as project(), varsel(), and cv_varsel()
or explicitly by a call to get_refmodel(). All non-"typical" reference model objects will be called
"custom" reference model objects.

Some arguments are for K-fold cross-validation (K-fold CV) only; see cv_varsel() for the use
of K-fold CV in projpred.

refmodel-init-get 53

Usage

get_refmodel(object, ...)

S3 method for class 'refmodel'
get_refmodel(object, ...)

S3 method for class 'vsel'
get_refmodel(object, ...)

S3 method for class 'projection'
get_refmodel(object, ...)

Default S3 method:
get_refmodel(object, family = NULL, ...)

S3 method for class 'stanreg'
get_refmodel(object, latent = FALSE, dis = NULL, ...)

init_refmodel(
object,
data,
formula,
family,
ref_predfun = NULL,
div_minimizer = NULL,
proj_predfun = NULL,
extract_model_data = NULL,
cvfun = NULL,
cvfits = NULL,
dis = NULL,
cvrefbuilder = NULL,
called_from_cvrefbuilder = FALSE,
...

)

Arguments

object For init_refmodel(), an object that the functions from arguments extract_model_data
and ref_predfun can be applied to, with a NULL object being treated specially
(see section "Value" below). For get_refmodel.default(), an object that
function family() can be applied to in order to retrieve the family (if argument
family is NULL), additionally to the properties required for init_refmodel().
For non-default methods of get_refmodel(), an object of the corresponding
class.

... For get_refmodel.default() and get_refmodel.stanreg(): arguments passed
to init_refmodel(). For the get_refmodel() generic: arguments passed to
the appropriate method. For init_refmodel(): arguments passed to extend_family()
(apart from family).

54 refmodel-init-get

family An object of class family representing the observation model (i.e., the distri-
butional family for the response) of the submodels. (However, the link and
the inverse-link function of this family are also used for quantities like pre-
dictions and fitted values related to the reference model.) May be NULL for
get_refmodel.default() in which case the family is retrieved from object.
For custom reference models, family does not have to coincide with the fam-
ily of the reference model (if the reference model possesses a formal family at
all). In typical reference models, however, these families do coincide. Further-
more, the latent projection is an exception where family is not the family of the
submodels (in that case, the family of the submodels is the gaussian() family).

latent A single logical value indicating whether to use the latent projection (TRUE) or
not (FALSE). Note that setting latent = TRUE causes all arguments starting with
augdat_ to be ignored.

dis A vector of posterior draws for the reference model’s dispersion parameter or—
more precisely—the posterior values for the reference model’s parameter-conditional
predictive variance (assuming that this variance is the same for all observations).
May be NULL if the submodels have no dispersion parameter or if the submodels
do have a dispersion parameter, but object is NULL (in which case 0 is used for
dis). Note that for the gaussian() family, dis is the standard deviation, not
the variance.

data A data.frame containing the data to use for the projection predictive variable
selection. Any contrasts attributes of the dataset’s columns are silently re-
moved. For custom reference models, the columns of data do not necessarily
have to coincide with those of the dataset used for fitting the reference model,
but keep in mind that a row-subset of data is used for argument newdata of
ref_predfun during K-fold CV.

formula The full formula to use for the search procedure. For custom reference models,
this does not necessarily coincide with the reference model’s formula. For gen-
eral information about formulas in R, see formula. For information about possi-
ble right-hand side (i.e., predictor) terms in formula here, see the main vignette
and section "Formula terms" below. For multilevel formulas, see also package
lme4 (in particular, functions lme4::lmer() and lme4::glmer()). For addi-
tive formulas, see also packages mgcv (in particular, function mgcv::gam())
and gamm4 (in particular, function gamm4::gamm4()).

ref_predfun Prediction function for the linear predictor of the reference model, including
offsets (if existing). See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below. If object is NULL, ref_predfun is ignored and an
internal default is used instead.

div_minimizer A function for minimizing the Kullback-Leibler (KL) divergence from the ref-
erence model to a submodel (i.e., for performing the projection of the refer-
ence model onto a submodel). The output of div_minimizer is used, e.g., by
proj_predfun’s argument fits. See also section "Arguments ref_predfun,
proj_predfun, and div_minimizer" below.

proj_predfun Prediction function for the linear predictor of a submodel onto which the refer-
ence model is projected. See also section "Arguments ref_predfun, proj_predfun,
and div_minimizer" below.

refmodel-init-get 55

extract_model_data

A function for fetching some variables (response, observation weights, offsets)
from the original dataset (supplied to argument data) or from a new dataset.
May be NULL for using an internal default that essentially corresponds to y_wobs_offs().
See also section "Argument extract_model_data" below.

cvfun For K-fold CV only. A function that, given a fold indices vector, fits the ref-
erence model separately for each fold and returns the K model fits as a list.
If object is NULL, cvfun may be NULL for using an internal default. Only one
of cvfits and cvfun needs to be provided (for K-fold CV). Note that cvfits
takes precedence over cvfun, i.e., if both are provided, cvfits is used.

cvfits For K-fold CV only. A list containing the K reference model refits from
which reference model objects are created. This list needs to have an attribute
called folds, consisting of an integer vector giving the fold indices (one fold
index per observation). Only one of cvfits and cvfun needs to be provided
(for K-fold CV). Note that cvfits takes precedence over cvfun, i.e., if both are
provided, cvfits is used.

cvrefbuilder For K-fold CV only. A function that, given a reference model fit for fold k ∈
{1, ...,K}, returns an object of the same type as init_refmodel() does. The
reference model fit for fold k is the k-th element of the return value of cvfun or
the k-th element of the list supplied to cvfits (either here in init_refmodel()
or in cv_varsel.refmodel()), extended by elements omitted (containing the
indices of the left-out observations in that fold) and projpred_k (containing
the integer k) if that k-th element is a list itself (otherwise, omitted and
projpred_k are appended as attributes). Argument cvrefbuilder may be NULL
for using an internal default: get_refmodel() if object is not NULL and a func-
tion calling init_refmodel() appropriately (with the assumption dis = 0) if
object is NULL.

called_from_cvrefbuilder

A single logical value indicating whether init_refmodel() is called from a
cvrefbuilder function (TRUE) or not (FALSE). Currently, TRUE only causes
some warnings to be suppressed (warnings which don’t need to be thrown for
each of the K reference model objects because it is sufficient to throw them for
the original reference model object only). This argument is mainly for internal
use, but may also be helpful for users with a custom cvrefbuilder function.

Value

An object that can be passed to all the functions that take the reference model fit as the first ar-
gument, such as varsel(), cv_varsel(), project(), proj_linpred(), and proj_predict().
Usually, the returned object is of class refmodel. However, if object is NULL, the returned ob-
ject is of class datafit as well as of class refmodel (with datafit being first). Objects of class
datafit are handled differently at several places throughout this package.

The elements of the returned object are not meant to be accessed directly but instead via downstream
functions (see the functions mentioned above as well as predict.refmodel()).

56 refmodel-init-get

Formula terms

Although bad practice (in general), a reference model lacking an intercept can be used within pro-
jpred. However, it will always be projected onto submodels which include an intercept. The reason
is that even if the true intercept in the reference model is zero, this does not need to hold for the
submodels.

In multilevel (group-level) terms, function calls on the right-hand side of the | character (e.g., (1 |
gr(group_variable)), which is possible in brms) are currently not allowed in projpred.

For additive models (still an experimental feature), only mgcv::s() and mgcv::t2() are currently
supported as smooth terms. Furthermore, these need to be called without any arguments apart from
the predictor names (symbols). For example, for smoothing the effect of a predictor x, only s(x)
or t2(x) are allowed. As another example, for smoothing the joint effect of two predictors x and
z, only s(x, z) or t2(x, z) are allowed (and analogously for higher-order joint effects, e.g., of
three predictors). Note that all smooth terms need to be included in formula (there is no random
argument as in rstanarm::stan_gamm4(), for example).

Arguments ref_predfun, proj_predfun, and div_minimizer

Arguments ref_predfun, proj_predfun, and div_minimizer may be NULL for using an internal
default (see projpred-package for the functions used by the default divergence minimizers). Other-
wise, let N denote the number of observations (in case of CV, these may be reduced to each fold),
Sref the number of posterior draws for the reference model’s parameters, and Sprj the number of
draws for the parameters of a submodel that the reference model has been projected onto (short:
the number of projected draws). For the augmented-data projection, let Ccat denote the number of
response categories, Clat the number of latent response categories (which typically equals Ccat−1),
and define Naugcat := N ·Ccat as well as Nauglat := N ·Clat. Then the functions supplied to these
arguments need to have the following prototypes:

• ref_predfun: ref_predfun(fit, newdata = NULL) where:
– fit accepts the reference model fit as given in argument object (but possibly refitted to

a subset of the observations, as done in K-fold CV).
– newdata accepts either NULL (for using the original dataset, typically stored in fit) or

data for new observations (at least in the form of a data.frame).
• proj_predfun: proj_predfun(fits, newdata) where:

– fits accepts a list of length Sprj containing this number of submodel fits. This list is
the same as that returned by project() in its output element outdmin (which in turn is
the same as the return value of div_minimizer, except if project() was used with an
object of class vsel based on an L1 search as well as with refit_prj = FALSE).

– newdata accepts data for new observations (at least in the form of a data.frame).
• div_minimizer does not need to have a specific prototype, but it needs to be able to be called

with the following arguments:
– formula accepts either a standard formula with a single response (if Sprj = 1 or in

case of the augmented-data projection) or a formula with Sprj > 1 response variables
cbind()-ed on the left-hand side in which case the projection has to be performed for
each of the response variables separately.

– data accepts a data.frame to be used for the projection. In case of the traditional or the
latent projection, this dataset has N rows. In case of the augmented-data projection, this
dataset has Naugcat rows.

refmodel-init-get 57

– family accepts an object of class family.
– weights accepts either observation weights (at least in the form of a numeric vector) or
NULL (for using a vector of ones as weights).

– projpred_var accepts an N × Sprj matrix of predictive variances (necessary for pro-
jpred’s internal GLM fitter) in case of the traditional or the latent projection and an
Naugcat × Sprj matrix (containing only NAs) in case of the augmented-data projection.

– projpred_ws_aug accepts an N×Sprj matrix of expected values for the response in case
of the traditional or the latent projection and an Naugcat×Sprj matrix of probabilities for
the response categories in case of the augmented-data projection.

– ... accepts further arguments specified by the user (or by projpred).

The return value of these functions needs to be:

• ref_predfun: for the traditional or the latent projection, an N×Sref matrix; for the augmented-
data projection, an Sref ×N ×Clat array (the only exception is the augmented-data projection
for the binomial() family in which case ref_predfun needs to return an N × Sref matrix
just like for the traditional projection because the array is constructed by an internal wrapper
function).

• proj_predfun: for the traditional or the latent projection, an N × Sprj matrix; for the
augmented-data projection, an N × Clat × Sprj array.

• div_minimizer: a list of length Sprj containing this number of submodel fits.

Argument extract_model_data

The function supplied to argument extract_model_data needs to have the prototype

extract_model_data(object, newdata, wrhs = NULL, orhs = NULL,
extract_y = TRUE)

where:

• object accepts the reference model fit as given in argument object (but possibly refitted to a
subset of the observations, as done in K-fold CV).

• newdata accepts data for new observations (at least in the form of a data.frame).

• wrhs accepts at least (i) a right-hand side formula consisting only of the variable in newdata
containing the observation weights or (ii) NULL for using the observation weights correspond-
ing to newdata (typically, the observation weights are stored in a column of newdata; if the
model was fitted without observation weights, a vector of ones should be used).

• orhs accepts at least (i) a right-hand side formula consisting only of the variable in newdata
containing the offsets or (ii) NULL for using the offsets corresponding to newdata (typically,
the offsets are stored in a column of newdata; if the model was fitted without offsets, a vector
of zeros should be used).

• extract_y accepts a single logical value indicating whether output element y (see below)
shall be NULL (TRUE) or not (FALSE).

The return value of extract_model_data needs to be a list with elements y, weights, and
offset, each being a numeric vector containing the data for the response, the observation weights,

58 refmodel-init-get

and the offsets, respectively. An exception is that y may also be NULL (depending on argument
extract_y), a non-numeric vector, or a factor.

The weights and offsets returned by extract_model_data will be assumed to hold for the reference
model as well as for the submodels.

Above, arguments wrhs and orhs were assumed to have defaults of NULL. It should be possible to
use defaults other than NULL, but we strongly recommend to use NULL. If defaults other than NULL
are used, they need to imply the behaviors described at items "(ii)" (see the descriptions of wrhs
and orhs).

Augmented-data projection

If a custom reference model for an augmented-data projection is needed, see also extend_family().

For the augmented-data projection, the response vector resulting from extract_model_data is
internally coerced to a factor (using as.factor()). The levels of this factor have to be identical
to family$cats (after applying extend_family() internally; see extend_family()’s argument
augdat_y_unqs).

Note that response-specific offsets (i.e., one length-N offset vector per response category) are not
supported by projpred yet. So far, only offsets which are the same across all response categories
are supported. This is why in case of the brms::categorical() family, offsets are currently not
supported at all.

Currently, object = NULL (i.e., a datafit; see section "Value") is not supported in case of the
augmented-data projection.

Latent projection

If a custom reference model for a latent projection is needed, see also extend_family().

For the latent projection, family$cats (after applying extend_family() internally; see extend_family()’s
argument latent_y_unqs) currently must not be NULL if the original (i.e., non-latent) response is a
factor. Conversely, if family$cats (after applying extend_family()) is non-NULL, the response
vector resulting from extract_model_data is internally coerced to a factor (using as.factor()).
The levels of this factor have to be identical to that non-NULL element family$cats.

Currently, object = NULL (i.e., a datafit; see section "Value") is not supported in case of the latent
projection.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Define the reference model object explicitly:

run_cvfun 59

ref <- get_refmodel(fit)
print(class(ref)) # gives `"refmodel"`
Now see, for example, `?varsel`, `?cv_varsel`, and `?project` for
possible post-processing functions. Most of the post-processing functions
call get_refmodel() internally at the beginning, so you will rarely need
to call get_refmodel() yourself.

A custom reference model object which may be used in a variable selection
where the candidate predictors are not a subset of those used for the
reference model's predictions:
ref_cust <- init_refmodel(

fit,
data = dat_gauss,
formula = y ~ X6 + X7,
family = gaussian(),
cvfun = function(folds) {
kfold(

fit, K = max(folds), save_fits = TRUE, folds = folds, cores = 1
)$fits[, "fit"]

},
dis = as.matrix(fit)[, "sigma"],
cvrefbuilder = function(cvfit) {

init_refmodel(cvfit,
data = dat_gauss[-cvfit$omitted, , drop = FALSE],
formula = y ~ X6 + X7,
family = gaussian(),
dis = as.matrix(cvfit)[, "sigma"],
called_from_cvrefbuilder = TRUE)

}
)
Now, the post-processing functions mentioned above (for example,
varsel(), cv_varsel(), and project()) may be applied to `ref_cust`.

run_cvfun Create cvfits from cvfun

Description

A helper function that can be used to create input for cv_varsel.refmodel()’s argument cvfits
by running first cv_folds() and then the reference model object’s cvfun (see init_refmodel()).
This is helpful if K-fold CV is run multiple times based on the same K reference model refits.

Usage

run_cvfun(object, ...)

Default S3 method:
run_cvfun(object, ...)

60 run_cvfun

S3 method for class 'refmodel'
run_cvfun(
object,
K = if (!inherits(object, "datafit")) 5 else 10,
folds = NULL,
seed = NA,
...

)

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel().

... For run_cvfun.default(): Arguments passed to get_refmodel(). For run_cvfun.refmodel():
Currently ignored.

K Number of folds. Must be at least 2 and not exceed the number of observations.
Ignored if folds is not NULL.

folds Either NULL for determining the CV folds automatically via cv_folds() (using
argument K) or a numeric (in fact, integer) vector giving the fold index for each
observation. In the latter case, argument K is ignored.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is reset
(to the state before calling run_cvfun()) upon exiting run_cvfun().

Value

An object that can be used as input for cv_varsel.refmodel()’s argument cvfits.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Define the reference model object explicitly (not really necessary here
because the get_refmodel() call is quite fast in this example, but in
general, this approach is faster than defining the reference model object
multiple times implicitly):
ref <- get_refmodel(fit)

Run the reference model object's `cvfun` (with a small value for `K`, but
only for the sake of speed in this example; this is not recommended in

solution_terms 61

general):
cv_fits <- run_cvfun(ref, K = 2, seed = 184)

Run cv_varsel() (with L1 search and small values for `nterms_max` and
`nclusters_pred`, but only for the sake of speed in this example; this is
not recommended in general) and use `cv_fits` there:
cvvs_L1 <- cv_varsel(ref, method = "L1", cv_method = "kfold",

cvfits = cv_fits, nterms_max = 3, nclusters_pred = 10,
seed = 5555)

Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

The purpose of run_cvfun() is to create an object that can be used in
multiple cv_varsel() calls, e.g., to check the sensitivity to the search
method (L1 or forward):
cvvs_fw <- cv_varsel(ref, method = "forward", cv_method = "kfold",

cvfits = cv_fits, nterms_max = 3, nclusters = 5,
nclusters_pred = 10, seed = 5555)

Stratified K-fold CV is straightforward:
n_strat <- 3L
set.seed(692)
Some example strata:
strat_fac <- sample(paste0("lvl", seq_len(n_strat)), size = nrow(dat_gauss),

replace = TRUE,
prob = diff(c(0, pnorm(seq_len(n_strat - 1L) - 0.5), 1)))

table(strat_fac)
Use loo::kfold_split_stratified() to create the folds vector:
folds_strat <- loo::kfold_split_stratified(K = 2, x = strat_fac)
table(folds_strat, strat_fac)
Call run_cvfun(), but this time with argument `folds` instead of `K` (here,
specifying argument `seed` would not be necessary because of the set.seed()
call above, but we specify it nonetheless for the sake of generality):
cv_fits_strat <- run_cvfun(ref, folds = folds_strat, seed = 391)
Now use `cv_fits_strat` analogously to `cv_fits` from above.

solution_terms Retrieve the full-data solution path from a varsel() or cv_varsel()
run or the predictor combination from a project() run

Description

The solution_terms.vsel() method retrieves the solution path from a full-data search (vsel ob-
jects are returned by varsel() or cv_varsel()). The solution_terms.projection() method
retrieves the predictor combination onto which a projection was performed (projection objects
are returned by project(), possibly as elements of a list). Both methods (and hence also the
solution_terms() generic) are deprecated and will be removed in a future release. Please use
ranking() instead of solution_terms.vsel() (ranking()’s output element fulldata contains
the full-data predictor ranking that is extracted by solution_terms.vsel(); ranking()’s output

62 suggest_size

element foldwise contains the fold-wise predictor rankings—if available—which were previously
not accessible via a built-in function) and predictor_terms() instead of solution_terms.projection().

Usage

solution_terms(object, ...)

S3 method for class 'vsel'
solution_terms(object, ...)

S3 method for class 'projection'
solution_terms(object, ...)

Arguments

object The object from which to retrieve the predictor terms. Possible classes may be
inferred from the names of the corresponding methods (see also the description).

... Currently ignored.

Value

A character vector of predictor terms.

suggest_size Suggest submodel size

Description

This function can suggest an appropriate submodel size based on a decision rule described in section
"Details" below. Note that this decision is quite heuristic and should be interpreted with caution. It is
recommended to examine the results via plot.vsel(), cv_proportions(), plot.cv_proportions(),
and/or summary.vsel() and to make the final decision based on what is most appropriate for the
problem at hand.

Usage

suggest_size(object, ...)

S3 method for class 'vsel'
suggest_size(
object,
stat = "elpd",
pct = 0,
type = "upper",
thres_elpd = NA,
warnings = TRUE,
...

)

suggest_size 63

Arguments

object An object of class vsel (returned by varsel() or cv_varsel()).
... Arguments passed to summary.vsel(), except for object, stats (which is set

to stat), type, and deltas (which is set to TRUE). See section "Details" below
for some important arguments which may be passed here.

stat Performance statistic (i.e., utility or loss) used for the decision. See argument
stats of summary.vsel() and plot.vsel() for possible choices.

pct A number giving the proportion (not percents) of the relative null model utility
one is willing to sacrifice. See section "Details" below for more information.

type Either "upper" or "lower" determining whether the decision is based on the
upper or lower uncertainty interval bound, respectively. See section "Details"
below for more information.

thres_elpd Only relevant if stat %in% c("elpd", "mlpd", "gmpd")). The threshold for
the ELPD difference (taking the submodel’s ELPD minus the baseline model’s
ELPD) above which the submodel’s ELPD is considered to be close enough to
the baseline model’s ELPD. An equivalent rule is applied in case of the MLPD
and the GMPD. See section "Details" for a formalization. Supplying NA deacti-
vates this.

warnings Mainly for internal use. A single logical value indicating whether to throw warn-
ings if automatic suggestion fails. Usually there is no reason to set this to FALSE.

Details

In general (beware of special cases below), the suggested model size is the smallest model size j ∈
{0, 1, ..., nterms_max} for which either the lower or upper bound (depending on argument type) of
the uncertainty interval (with nominal coverage 1 - alpha; see argument alpha of summary.vsel())
for Uj − Ubase (with Uj denoting the j-th submodel’s true utility and Ubase denoting the baseline
model’s true utility) falls above (or is equal to)

pct · (u0 − ubase)

where u0 denotes the null model’s estimated utility and ubase the baseline model’s estimated util-
ity. The baseline model is either the reference model or the best submodel found (see argument
baseline of summary.vsel()).

In doing so, loss statistics like the root mean squared error (RMSE) and the mean squared error
(MSE) are converted to utilities by multiplying them by -1, so a call such as suggest_size(object,
stat = "rmse", type = "upper") finds the smallest model size whose upper uncertainty interval
bound for the negative RMSE or MSE exceeds (or is equal to) the cutoff (or, equivalently, has the
lower uncertainty interval bound for the RMSE or MSE below—or equal to—the cutoff). This is
done to make the interpretation of argument type the same regardless of argument stat.

For the geometric mean predictive density (GMPD), the decision rule above is applied on log()
scale. In other words, if the true GMPD is denoted by U∗

j for the j-th submodel and U∗
base for

the baseline model (so that Uj and Ubase from above are given by Uj = log(U∗
j) and Ubase =

log(U∗
base)), then suggest_size() yields the smallest model size whose lower or upper (depending

on argument type) uncertainty interval bound for
U∗

j

U∗
base

exceeds (or is equal to)

(
u∗
0

u∗
base

)pct

64 suggest_size

where u∗
0 denotes the null model’s estimated GMPD and u∗

base the baseline model’s estimated
GMPD.

If !is.na(thres_elpd) and stat = "elpd", the decision rule above is extended: The suggested
model size is then the smallest model size j fulfilling the rule above or uj − ubase > thres_elpd.
Correspondingly, in case of stat = "mlpd" (and !is.na(thres_elpd)), the suggested model size
is the smallest model size j fulfilling the rule above or uj − ubase >

thres_elpd
N with N denoting the

number of observations. Correspondingly, in case of stat = "gmpd" (and !is.na(thres_elpd)),
the suggested model size is the smallest model size j fulfilling the rule above or

u∗
j

u∗
base

> exp(thres_elpdN).

For example (disregarding the special extensions in case of !is.na(thres_elpd) with stat %in%
c("elpd", "mlpd", "gmpd")), alpha = 2 * pnorm(-1), pct = 0, and type = "upper" means that
we select the smallest model size for which the upper bound of the 1 - 2 * pnorm(-1) (approxi-
mately 68.3 %) uncertainty interval for Uj − Ubase (

U∗
j

U∗
base

in case of the GMPD) exceeds (or is
equal to) zero (one in case of the GMPD), that is (if stat is a performance statistic for which a
normal-approximation uncertainty interval is used, see argument stats of summary.vsel() and
plot.vsel()), for which the submodel’s utility estimate is at most one standard error smaller than
the baseline model’s utility estimate (with that standard error referring to the utility difference).

Apart from the two summary.vsel() arguments mentioned above (alpha and baseline), resp_oscale
is another important summary.vsel() argument that may be passed via

Value

A single numeric value, giving the suggested submodel size (or NA if the suggestion failed).

The intercept is not counted by suggest_size(), so a suggested size of zero stands for the intercept-
only model.

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)
print(suggest_size(vs))

summary.vsel 65

summary.vsel Summary of a varsel() or cv_varsel() run

Description

This is the summary() method for vsel objects (returned by varsel() or cv_varsel()). Apart
from some general information about the varsel() or cv_varsel() run, it shows the full-data
predictor ranking, basic information about the (CV) variability in the ranking of the predictors (if
available; inferred from cv_proportions()), and estimates for user-specified predictive perfor-
mance statistics. For a graphical representation, see plot.vsel(). For extracting the predictive
performance results printed at the bottom of the output created by this summary() method, see
performances().

Usage

S3 method for class 'vsel'
summary(
object,
nterms_max = NULL,
stats = "elpd",
type = c("mean", "se", "diff", "diff.se"),
deltas = FALSE,
alpha = 2 * pnorm(-1),
baseline = if (!inherits(object$refmodel, "datafit")) "ref" else "best",
resp_oscale = TRUE,
cumulate = FALSE,
...

)

Arguments

object An object of class vsel (returned by varsel() or cv_varsel()).
nterms_max Maximum submodel size (number of predictor terms) for which the performance

statistics are calculated. Using NULL is effectively the same as length(ranking(object)$fulldata).
Note that nterms_max does not count the intercept, so use nterms_max = 0 for
the intercept-only model. For plot.vsel(), nterms_max must be at least 1.

stats One or more character strings determining which performance statistics (i.e.,
utilities or losses) to estimate based on the observations in the evaluation (or
"test") set (in case of cross-validation, these are all observations because they
are partitioned into multiple test sets; in case of varsel() with d_test = NULL,
these are again all observations because the test set is the same as the training
set). Available statistics are:

• "elpd": expected log (pointwise) predictive density (for a new dataset)
(ELPD). Estimated by the sum of the observation-specific log predictive
density values (with each of these predictive density values being a—possibly
weighted—average across the parameter draws). For the corresponding un-
certainty interval, a normal approximation is used.

66 summary.vsel

• "mlpd": mean log predictive density (MLPD), that is, the ELPD divided by
the number of observations. For the corresponding uncertainty interval, a
normal approximation is used.

• "gmpd": geometric mean predictive density (GMPD), that is, exp() of the
MLPD. The GMPD is especially helpful for discrete response families (be-
cause there, the GMPD is bounded by zero and one). For the correspond-
ing standard error, the delta method is used. The corresponding uncertainty
interval type is "exponentiated normal approximation" because the uncer-
tainty interval bounds are the exponentiated uncertainty interval bounds of
the MLPD.

• "mse": mean squared error (only available in the situations mentioned in
section "Details" below). For the corresponding uncertainty interval, a log-
normal approximation is used if deltas is FALSE and a normal approxima-
tion is used if deltas is TRUE (or "mixed", in case of plot.vsel()).

• "rmse": root mean squared error (only available in the situations mentioned
in section "Details" below). For the corresponding standard error, the delta
method is used. For the corresponding uncertainty interval, a log-normal
approximation is used if deltas is FALSE and a normal approximation is
used if deltas is TRUE (or "mixed", in case of plot.vsel()).

• "R2": R-squared, i.e., coefficient of determination (only available in the
situations mentioned in section "Details" below). For the corresponding
standard error, the delta method is used. For the corresponding uncertainty
interval, a normal approximation is used.

• "acc" (or its alias, "pctcorr"): classification accuracy (only available in
the situations mentioned in section "Details" below). By "classification ac-
curacy", we mean the proportion of correctly classified observations. For
this, the response category ("class") with highest probability (the proba-
bilities are model-based) is taken as the prediction ("classification") for an
observation. For the corresponding uncertainty interval, a normal approxi-
mation is used.

• "auc": area under the ROC curve (only available in the situations men-
tioned in section "Details" below). For the corresponding standard error
and lower and upper uncertainty interval bounds, bootstrapping is used. Not
supported in case of subsampled LOO-CV (see argument nloo of cv_varsel()).

type One or more items from "mean", "se", "lower", "upper", "diff", "diff.lower",
"diff.upper", and "diff.se" indicating which of these to compute for each
item from stats (mean, standard error, lower and upper uncertainty interval
bounds, mean difference to the corresponding statistic of the reference model,
lower and upper uncertainty interval bound for this difference, and standard error
of this difference, respectively; note that for the GMPD, "diff", "diff.lower",
"diff.upper", and "diff.se" actually refer to the ratio vs. the reference
model, not the difference). The uncertainty interval bounds belong to uncer-
tainty intervals with (nominal) coverage 1 - alpha. Items "diff", "diff.lower",
"diff.upper", and "diff.se" are only supported if deltas is FALSE.

deltas May be set to FALSE or TRUE. If FALSE, the submodel performance statistics are
estimated on their actual scale. If TRUE, the submodel statistics are estimated rel-
atively to the baseline model (see argument baseline). For the GMPD, the term

summary.vsel 67

"relatively" refers to the ratio vs. the baseline model (i.e., the submodel statistic
divided by the baseline model statistic). For all other stats, "relatively" refers
to the difference from the baseline model (i.e., the submodel statistic minus the
baseline model statistic).

alpha A number determining the (nominal) coverage 1 - alpha of the uncertainty in-
tervals. For example, in case of a normal-approximation uncertainty interval,
alpha = 2 * pnorm(-1) corresponds to a uncertainty interval stretching by one
standard error on either side of the point estimate.

baseline For summary.vsel(): Only relevant if deltas is TRUE. For plot.vsel(): Al-
ways relevant. Either "ref" or "best", indicating whether the baseline is the
reference model or the best submodel found (in terms of stats[1]), respec-
tively. In case of subsampled LOO-CV, baseline = "best" is not supported.

resp_oscale Only relevant for the latent projection. A single logical value indicating whether
to calculate the performance statistics on the original response scale (TRUE) or
on latent scale (FALSE).

cumulate Passed to argument cumulate of cv_proportions(). Affects column cv_proportions_diag
of the summary table.

... Arguments passed to the internal function which is used for bootstrapping (if
applicable; see argument stats). Currently, relevant arguments are B (the num-
ber of bootstrap samples, defaulting to 2000) and seed (see set.seed(), but
defaulting to NA so that set.seed() is not called within that function at all).

Details

The stats options "mse", "rmse", and "R2" are only available for:

• the traditional projection,

• the latent projection with resp_oscale = FALSE,

• the latent projection with resp_oscale = TRUE in combination with <refmodel>$family$cats
being NULL.

The stats option "acc" (= "pctcorr") is only available for:

• the binomial() family in case of the traditional projection,

• all families in case of the augmented-data projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL,

• all families (on the original response scale) in case of the latent projection with resp_oscale
= TRUE in combination with <refmodel>$family$cats being not NULL.

The stats option "auc" is only available for:

• the binomial() family in case of the traditional projection,

• the binomial() family (on the original response scale) in case of the latent projection with
resp_oscale = TRUE in combination with <refmodel>$family$cats being NULL.

Note that the stats option "auc" is not supported in case of subsampled LOO-CV (see argument
nloo of cv_varsel()).

68 varsel

Value

An object of class vselsummary. The elements of this object are not meant to be accessed directly
but instead via helper functions (print.vselsummary() and performances.vselsummary()).

See Also

print.vselsummary(), performances.vselsummary()

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)
print(summary(vs), digits = 1)

varsel Run search and performance evaluation without cross-validation

Description

Run the search part and the evaluation part for a projection predictive variable selection. The
search part determines the predictor ranking (also known as solution path), i.e., the best submodel
for each submodel size (number of predictor terms). The evaluation part determines the predictive
performance of the submodels along the predictor ranking. A special method is varsel.vsel()
which re-uses the search results from an earlier varsel() (or cv_varsel()) run, as illustrated in
the main vignette.

Usage

varsel(object, ...)

Default S3 method:
varsel(object, ...)

varsel 69

S3 method for class 'vsel'
varsel(object, ...)

S3 method for class 'refmodel'
varsel(
object,
d_test = NULL,
method = "forward",
ndraws = NULL,
nclusters = 20,
ndraws_pred = 400,
nclusters_pred = NULL,
refit_prj = !inherits(object, "datafit"),
nterms_max = NULL,
verbose = getOption("projpred.verbose", as.integer(interactive())),
search_control = NULL,
lambda_min_ratio = 1e-05,
nlambda = 150,
thresh = 1e-06,
penalty = NULL,
search_terms = NULL,
search_out = NULL,
seed = NA,
...

)

Arguments

object An object of class refmodel (returned by get_refmodel() or init_refmodel())
or an object that can be passed to argument object of get_refmodel().

... For varsel.default(): Arguments passed to get_refmodel() as well as to
varsel.refmodel(). For varsel.vsel(): Arguments passed to varsel.refmodel().
For varsel.refmodel(): Arguments passed to the divergence minimizer (see
argument div_minimizer of init_refmodel() as well as section "Draw-wise
divergence minimizers" of projpred-package) when refitting the submodels for
the performance evaluation (if refit_prj is TRUE).

d_test A list of the structure outlined in section "Argument d_test" below, providing
test data for evaluating the predictive performance of the submodels as well as
of the reference model. If NULL, the training data is used.

method The method for the search part. Possible options are "forward" for forward
search and "L1" for L1 search. See also section "Details" below.

ndraws Number of posterior draws used in the search part. Ignored if nclusters is not
NULL or in case of L1 search (because L1 search always uses a single cluster).
If both (nclusters and ndraws) are NULL, the number of posterior draws from
the reference model is used for ndraws. See also section "Details" below.

nclusters Number of clusters of posterior draws used in the search part. Ignored in case
of L1 search (because L1 search always uses a single cluster). For the meaning
of NULL, see argument ndraws. See also section "Details" below.

70 varsel

ndraws_pred Only relevant if refit_prj is TRUE. Number of posterior draws used in the eval-
uation part. Ignored if nclusters_pred is not NULL. If both (nclusters_pred
and ndraws_pred) are NULL, the number of posterior draws from the reference
model is used for ndraws_pred. See also section "Details" below.

nclusters_pred Only relevant if refit_prj is TRUE. Number of clusters of posterior draws used
in the evaluation part. For the meaning of NULL, see argument ndraws_pred.
See also section "Details" below.

refit_prj For the evaluation part, should the projections onto the submodels along the pre-
dictor ranking be performed again using ndraws_pred draws or nclusters_pred
clusters (TRUE) or should their projections from the search part, which used
ndraws draws or nclusters clusters, be re-used (FALSE)?

nterms_max Maximum submodel size (number of predictor terms) up to which the search
is continued. If NULL, then min(19, D) is used where D is the number of terms
in the reference model (or in search_terms, if supplied). Note that nterms_max
does not count the intercept, so use nterms_max = 0 for the intercept-only model.
(Correspondingly, D above does not count the intercept.)

verbose A single integer value from the set {0, 1, 2, 3, 4} (for varsel(), 3 and 4 have the
same effect), indicating how much information (if any) to print out during the
computations. Higher values indicate that more information should be printed, 0
deactivates the verbose mode. Internally, argument verbose is coerced to inte-
ger via as.integer(), so technically, a single logical value or a single numeric
value work as well.

search_control A list of "control" arguments (i.e., tuning parameters) for the search. In case
of forward search, these arguments are passed to the divergence minimizer (see
argument div_minimizer of init_refmodel() as well as section "Draw-wise
divergence minimizers" of projpred-package). In case of forward search, NULL
causes ... to be used not only for the performance evaluation, but also for the
search. In case of L1 search, possible arguments are:

• lambda_min_ratio: Ratio between the smallest and largest lambda in the
L1-penalized search (default: 1e-5). This parameter essentially determines
how long the search is carried out, i.e., how large submodels are explored.
No need to change this unless the program gives a warning about this.

• nlambda: Number of values in the lambda grid for L1-penalized search
(default: 150). No need to change this unless the program gives a warning
about this.

• thresh: Convergence threshold when computing the L1 path (default: 1e-6).
Usually, there is no need to change this.

lambda_min_ratio

Deprecated (please use search_control instead). Only relevant for L1 search.
Ratio between the smallest and largest lambda in the L1-penalized search. This
parameter essentially determines how long the search is carried out, i.e., how
large submodels are explored. No need to change this unless the program gives
a warning about this.

nlambda Deprecated (please use search_control instead). Only relevant for L1 search.
Number of values in the lambda grid for L1-penalized search. No need to change
this unless the program gives a warning about this.

varsel 71

thresh Deprecated (please use search_control instead). Only relevant for L1 search.
Convergence threshold when computing the L1 path. Usually, there is no need
to change this.

penalty Only relevant for L1 search. A numeric vector determining the relative penalties
or costs for the predictors. A value of 0 means that those predictors have no cost
and will therefore be selected first, whereas Inf means those predictors will
never be selected. If NULL, then 1 is used for each predictor.

search_terms Only relevant for forward search. A custom character vector of predictor term
blocks to consider for the search. Section "Details" below describes more pre-
cisely what "predictor term block" means. The intercept ("1") is always in-
cluded internally via union(), so there’s no difference between including it ex-
plicitly or omitting it. The default search_terms considers all the terms in the
reference model’s formula.

search_out Intended for internal use.

seed Pseudorandom number generation (PRNG) seed by which the same results can
be obtained again if needed. Passed to argument seed of set.seed(), but can
also be NA to not call set.seed() at all. If not NA, then the PRNG state is re-
set (to the state before calling varsel()) upon exiting varsel(). Here, seed is
used for clustering the reference model’s posterior draws (if !is.null(nclusters)
or !is.null(nclusters_pred)) and for drawing new group-level effects when
predicting from a multilevel submodel (however, not yet in case of a GAMM).

Details

Arguments ndraws, nclusters, nclusters_pred, and ndraws_pred are automatically truncated
at the number of posterior draws in the reference model (which is 1 for datafits). Using less
draws or clusters in ndraws, nclusters, nclusters_pred, or ndraws_pred than posterior draws
in the reference model may result in slightly inaccurate projection performance. Increasing these
arguments affects the computation time linearly.

For argument method, there are some restrictions: For a reference model with multilevel or additive
formula terms or a reference model set up for the augmented-data projection, only the forward
search is available. Furthermore, argument search_terms requires a forward search to take effect.

L1 search is faster than forward search, but forward search may be more accurate. Furthermore,
forward search may find a sparser model with comparable performance to that found by L1 search,
but it may also overfit when more predictors are added. This overfit can be detected by running
search validation (see cv_varsel()).

An L1 search may select an interaction term before all involved lower-order interaction terms (in-
cluding main-effect terms) have been selected. In projpred versions > 2.6.0, the resulting predictor
ranking is automatically modified so that the lower-order interaction terms come before this inter-
action term, but if this is conceptually undesired, choose the forward search instead.

The elements of the search_terms character vector don’t need to be individual predictor terms.
Instead, they can be building blocks consisting of several predictor terms connected by the + sym-
bol. To understand how these building blocks work, it is important to know how projpred’s forward
search works: It starts with an empty vector chosen which will later contain already selected predic-
tor terms. Then, the search iterates over model sizes j ∈ {0, ..., J} (with J denoting the maximum
submodel size, not counting the intercept). The candidate models at model size j are constructed

72 varsel

from those elements from search_terms which yield model size j when combined with the chosen
predictor terms. Note that sometimes, there may be no candidate models for model size j. Also
note that internally, search_terms is expanded to include the intercept ("1"), so the first step of the
search (model size 0) always consists of the intercept-only model as the only candidate.

As a search_terms example, consider a reference model with formula y ~ x1 + x2 + x3. Then, to
ensure that x1 is always included in the candidate models, specify search_terms = c("x1", "x1 +
x2", "x1 + x3", "x1 + x2 + x3") (or, in a simpler way that leads to the same results, search_terms
= c("x1", "x1 + x2", "x1 + x3"), for which helper function force_search_terms() exists). This
search would start with y ~ 1 as the only candidate at model size 0. At model size 1, y ~ x1 would
be the only candidate. At model size 2, y ~ x1 + x2 and y ~ x1 + x3 would be the two candidates.
At the last model size of 3, y ~ x1 + x2 + x3 would be the only candidate. As another example, to
exclude x1 from the search, specify search_terms = c("x2", "x3", "x2 + x3") (or, in a simpler
way that leads to the same results, search_terms = c("x2", "x3")).

Value

An object of class vsel. The elements of this object are not meant to be accessed directly but
instead via helper functions (see the main vignette and projpred-package).

Argument d_test

If not NULL, then d_test needs to be a list with the following elements:

• data: a data.frame containing the predictor variables for the test set.

• offset: a numeric vector containing the offset values for the test set (if there is no offset, use
a vector of zeros).

• weights: a numeric vector containing the observation weights for the test set (if there are no
observation weights, use a vector of ones).

• y: a vector or a factor containing the response values for the test set. In case of the latent
projection, this has to be a vector containing the latent response values, but it can also be a
vector full of NAs if latent-scale post-processing is not needed.

• y_oscale: Only needs to be provided in case of the latent projection where this needs to be a
vector or a factor containing the original (i.e., non-latent) response values for the test set.

See Also

cv_varsel()

Examples

Data:
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

The `stanreg` fit which will be used as the reference model (with small
values for `chains` and `iter`, but only for technical reasons in this
example; this is not recommended in general):
fit <- rstanarm::stan_glm(

y ~ X1 + X2 + X3 + X4 + X5, family = gaussian(), data = dat_gauss,
QR = TRUE, chains = 2, iter = 500, refresh = 0, seed = 9876

y_wobs_offs 73

)

Run varsel() (here without cross-validation, with L1 search, and with small
values for `nterms_max` and `nclusters_pred`, but only for the sake of
speed in this example; this is not recommended in general):
vs <- varsel(fit, method = "L1", nterms_max = 3, nclusters_pred = 10,

seed = 5555)
Now see, for example, `?print.vsel`, `?plot.vsel`, `?suggest_size.vsel`,
and `?ranking` for possible post-processing functions.

y_wobs_offs Extract response values, observation weights, and offsets

Description

A helper function for extracting response values, observation weights, and offsets from a dataset.
It is designed for use in the extract_model_data function of custom reference model objects (see
init_refmodel()).

Usage

y_wobs_offs(newdata, wrhs = NULL, orhs = NULL, resp_form)

Arguments

newdata The data.frame from which at least the response values should be extracted.

wrhs Either a right-hand side formula consisting only of the variable in newdata con-
taining the weights, NULL (for using a vector of ones), or directly the numeric
vector of observation weights.

orhs Either a right-hand side formula consisting only of the variable in newdata con-
taining the offsets, NULL (for using a vector of zeros), or directly the numeric
vector of offsets.

resp_form If this is a formula, then the second element of this formula (if the formula
is a standard formula with both left-hand and right-hand side, then its second
element is the left-hand side; if the formula is a right-hand side formula, then
its second element is the right-hand side) will be extracted from newdata (so
resp_form may be either a standard formula or a right-hand side formula, but in
the latter case, the right-hand side should consist only of the response variable).
In all other cases, NULL will be returned for element y of the output list.

Value

A list with elements y, weights, and offset, each being a numeric vector containing the data for
the response, the observation weights, and the offsets, respectively. An exception is that y may also
be NULL (depending on argument resp_form), a non-numeric vector, or a factor.

74 y_wobs_offs

See Also

init_refmodel()

Index

∗ datasets
df_binom, 23
df_gaussian, 23
mesquite, 30

abbreviate(), 36, 38
as.factor(), 26, 28, 43, 58
as.matrix(), 7
as.matrix.projection, 7
as.matrix.projection(), 5, 6, 9
as_draws.projection

(as_draws_matrix.projection), 9
as_draws_matrix.projection, 9
as_draws_matrix.projection(), 5–7, 50
augdat_ilink_binom, 11
augdat_link_binom, 11

binomial(), 4, 11, 24, 25, 37, 38, 57, 67
break_up_matrix_term, 12
brms::bernoulli(), 4
brms::brmsfamily(), 26
brms::categorical(), 4, 8, 10, 26, 58
brms::cumulative(), 4, 41, 44
brms::get_refmodel.brmsfit(), 18, 52
brms::loo_moment_match(), 21
brms::reloo(), 21
brms::resp_thres(), 26

cbind(), 56
cl_agg, 12
cl_agg(), 28
cv-indices, 13
cv_folds (cv-indices), 13
cv_folds(), 14, 59, 60
cv_ids (cv-indices), 13
cv_ids(), 14
cv_proportions, 15
cv_proportions(), 6, 16, 32, 33, 37, 48, 52,

62, 65, 67
cv_proportions.ranking(), 15, 32

cv_proportions.vsel(), 15
cv_varsel, 16
cv_varsel(), 4–6, 15, 16, 19, 20, 28, 29, 31,

33–35, 38, 47, 48, 50–52, 55, 61, 63,
65–68, 71, 72

cv_varsel.default(), 17
cv_varsel.refmodel(), 14, 17, 55, 59, 60
cv_varsel.vsel(), 16, 17
cvfolds (cv-indices), 13
cvfolds(), 14

df_binom, 23
df_gaussian, 23

example(), 6
exp(), 35, 66
extend_family, 24
extend_family(), 8, 10–12, 25, 26, 28, 42,

43, 53, 58
extra-families, 28

family, 28
family(), 24, 53
force_search_terms, 29
force_search_terms(), 20, 72
formula, 3, 12, 54, 56

gamm4::gamm4(), 4, 54
gaussian(), 4, 54
gc(), 6
get_refmodel (refmodel-init-get), 52
get_refmodel(), 6, 17, 43, 46, 48, 49, 52, 53,

55, 60, 69
get_refmodel.default(), 53, 54
get_refmodel.stanreg(), 18, 52, 53
ggplot2::element_text(), 32, 37
ggplot2::geom_linerange(), 36
ggplot2::geom_point(), 36
ggrepel::geom_label_repel(), 36
ggrepel::geom_text_repel(), 36

75

76 INDEX

glm(), 4

init_refmodel (refmodel-init-get), 52
init_refmodel(), 3, 6, 14, 17–19, 24, 26, 28,

40–44, 46, 50, 52, 53, 55, 59, 60, 69,
70, 73, 74

lm(), 4
lme4::glmer(), 4, 54
lme4::lmer(), 4, 54
log(), 63
loo::loo-glossary, 21
loo::loo_moment_match(), 21
loo::psis(), 21
loo::sis(), 21

MASS::polr(), 4
mclogit::mblogit(), 4
mesquite, 30
mgcv::gam(), 4, 54
mgcv::s(), 56
mgcv::t2(), 56

nnet::multinom(), 4

ordinal::clmm(), 4

performances, 31
performances(), 6, 31, 33, 65
performances.vsel(), 31
performances.vselsummary(), 31, 68
plot(), 33
plot.cv_proportions, 32
plot.cv_proportions(), 6, 16, 32, 48, 62
plot.ranking (plot.cv_proportions), 32
plot.ranking(), 32
plot.vsel, 33
plot.vsel(), 6, 18, 31, 34–36, 62–67
poisson(), 24, 25
posterior::as_draws(), 9
posterior::as_draws_matrix(), 9
posterior::draws_matrix(), 10, 40, 42
posterior::resample_draws(), 9
posterior::weight_draws(), 10, 40
pred-projection, 39
predict(), 43
predict.glm(), 44
predict.refmodel, 43
predict.refmodel(), 44, 55
predictor_terms, 45

predictor_terms(), 62
print(), 46, 47
print.data.frame(), 47
print.default(), 47
print.projection, 46
print.refmodel, 46
print.vsel, 47
print.vsel(), 6
print.vselsummary, 47
print.vselsummary(), 6, 47, 68
proj_linpred (pred-projection), 39
proj_linpred(), 6, 39–41, 50, 55
proj_predict (pred-projection), 39
proj_predict(), 6, 25, 27, 39–42, 50, 55
project, 48
project(), 4, 6–9, 39–41, 45, 46, 49, 50, 52,

55, 56, 61
projpred (projpred-package), 3
projpred-package, 3, 17, 19–22, 50, 56, 69,

70, 72

ranking, 51
ranking(), 6, 15, 32, 48, 61
ranking.vsel(), 15
refmodel-init-get, 25, 41, 44, 52
rstanarm::stan_gamm4(), 56
rstanarm::stan_polr(), 4
run_cvfun, 59
run_cvfun(), 18, 60
run_cvfun.default(), 60
run_cvfun.refmodel(), 60

set.seed(), 14, 19, 37, 40, 49, 60, 67, 71
solution_terms, 61
solution_terms(), 61
solution_terms.projection(), 61, 62
solution_terms.vsel(), 61
Student_t (extra-families), 28
Student_t(), 29
suggest_size, 62
suggest_size(), 36, 48, 63, 64
suggest_size.vsel(), 6
summary(), 65
summary.vsel, 65
summary.vsel(), 6, 18, 31, 33, 36, 47, 48,

62–64, 67

unix::rlimit_as(), 5, 21

varsel, 68

INDEX 77

varsel(), 4, 6, 15, 16, 19, 22, 29, 31, 33, 34,
47, 48, 50–52, 55, 61, 63, 65, 68, 70,
71

varsel.default(), 69
varsel.refmodel(), 69
varsel.vsel(), 68, 69

y_wobs_offs, 73
y_wobs_offs(), 55

	projpred-package
	as.matrix.projection
	as_draws_matrix.projection
	augdat_ilink_binom
	augdat_link_binom
	break_up_matrix_term
	cl_agg
	cv-indices
	cv_proportions
	cv_varsel
	df_binom
	df_gaussian
	extend_family
	extra-families
	force_search_terms
	mesquite
	performances
	plot.cv_proportions
	plot.vsel
	pred-projection
	predict.refmodel
	predictor_terms
	print.projection
	print.refmodel
	print.vsel
	print.vselsummary
	project
	ranking
	refmodel-init-get
	run_cvfun
	solution_terms
	suggest_size
	summary.vsel
	varsel
	y_wobs_offs
	Index

