Type: | Package |
Title: | Probabilities for Bivariate Normal Distribution |
Version: | 0.5-47 |
Date: | 2023-11-30 15:01:12.000296 |
Author: | Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>) |
Maintainer: | Alexander Robitzsch <robitzsch@ipn.uni-kiel.de> |
Description: | Computes probabilities of the bivariate normal distribution in a vectorized R function (Drezner & Wesolowsky, 1990, <doi:10.1080/00949659008811236>). |
Depends: | R (≥ 3.1) |
Imports: | Rcpp |
Enhances: | pbivnorm |
LinkingTo: | Rcpp, RcppArmadillo |
URL: | https://github.com/alexanderrobitzsch/pbv, https://sites.google.com/view/alexander-robitzsch/software |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | yes |
Packaged: | 2023-11-30 14:02:18 UTC; sunpn563 |
Repository: | CRAN |
Date/Publication: | 2023-11-30 15:20:02 UTC |
Probabilities for Bivariate Normal Distribution
Description
Computes probabilities of the bivariate normal distribution in a vectorized R function (Drezner & Wesolowsky, 1990, <doi:10.1080/00949659008811236>).
Author(s)
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
References
Drezner, Z., & Wesolowsky, G. O. (1990). On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation, 35(1-2), 101-107. doi:10.1080/00949659008811236
Probabilities for Bivariate Normal Distribution
Description
The function pbvnorm
computes probabilities \Phi_2(x,y,\rho)
for
the standardized bivariate normal distribution (Drezner & Wesolowsky, 1990;
West, 2004).
The function dbvnorm
computes the corresponding density \phi_2(x,y,\rho)
.
Usage
pbvnorm(x, y, rho)
dbvnorm(x, y, rho, log=FALSE)
## exported Rcpp functions
pbv_rcpp_pbvnorm0( h1, hk, r)
pbv_rcpp_pbvnorm( x, y, rho)
pbv_rcpp_dbvnorm0( x, y, rho, use_log)
pbv_rcpp_dbvnorm( x, y, rho, use_log)
Arguments
x |
Vector of first ordinate |
y |
Vector of second ordinate |
rho |
Vector of correlations |
log |
Logical indicating whether logarithm of the density should be calculated |
h1 |
Numeric |
hk |
Numeric |
r |
Numeric |
use_log |
Logical |
Value
A vector
Note
The pbv package can also be used to include Rcpp functions for
computing bivariate probabilities at the C++ level. Numeric and vector versions are
double pbv::pbv_rcpp_pbvnorm0( double h1, double hk, double r)
Rcpp::NumericVector pbv::pbv_rcpp_pbvnorm( Rcpp::NumericVector x,
Rcpp::NumericVector y, Rcpp::NumericVector rho)
References
Drezner, Z., & Wesolowsky, G. O. (1990). On the computation of the bivariate normal integral. Journal of Statistical Computation and Simulation, 35(1-2), 101-107. doi:10.1080/00949659008811236
Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1(2), 141-149.
West, G. (2005). Better approximations to cumulative normal functions. Wilmott Magazine, 9, 70-76.
See Also
See pbivnorm::pbivnorm
in the pbivnorm package
and mnormt::biv.nt.prob
in the mnormt package
for alternative implementations (Genz, 1992).
Examples
#############################################################################
# EXAMPLE 1: Comparison with alternative implementations
#############################################################################
#*** simulate different values of ordinates and correlations
set.seed(9898)
N <- 3000
x <- stats::runif(N,-3,3)
y <- stats::runif(N,-3,3)
rho <- stats::runif(N,-.95,.95)
#*** compute probabilities
res1 <- pbv::pbvnorm(x=x,y=y,rho=rho)
## Not run:
#-- compare results with pbivnorm package
library(pbivnorm)
res2 <- pbivnorm::pbivnorm(x=x, y=y, rho=rho)
summary(abs(res1-res2))
#*** compute density values
log <- TRUE # logical indicating whether log density should be evaluated
res1 <- pbv::dbvnorm(x=x, y=y, rho=rho, log=log )
#-- compare results with mvtnorm package
library(mvtnorm)
res2 <- rep(NA, N)
sigma <- diag(2)
for (ii in 1:N){
sigma[1,2] <- sigma[2,1] <- rho[ii]
res2[ii] <- mvtnorm::dmvnorm(x=c(x[ii],y[ii]), sigma=sigma, log=log)
}
summary(abs(res1-res2))
## End(Not run)