Type: | Package |
Title: | Panel Vector Autoregression |
Version: | 0.5.6 |
Description: | We extend two general methods of moment estimators to panel vector autoregression models (PVAR) with p lags of endogenous variables, predetermined and strictly exogenous variables. This general PVAR model contains the first difference GMM estimator by Holtz-Eakin et al. (1988) <doi:10.2307/1913103>, Arellano and Bond (1991) <doi:10.2307/2297968> and the system GMM estimator by Blundell and Bond (1998) <doi:10.1016/S0304-4076(98)00009-8>. We also provide specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyData: | TRUE |
Depends: | R (≥ 3.5) |
Imports: | knitr, MASS, Matrix (≥ 1.2-11), progress, matrixcalc, texreg, ggplot2, reshape2 |
Suggests: | rmarkdown |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2024-11-25 13:51:28 UTC; ferstl |
Author: | Michael Sigmund [aut], Robert Ferstl [aut, cre] |
Maintainer: | Robert Ferstl <robert.ferstl@ur.de> |
Repository: | CRAN |
Date/Publication: | 2024-11-25 14:30:02 UTC |
Andrews Lu MMSC Criteria based on Hansen-J-Statistic
Description
...
Usage
Andrews_Lu_MMSC(model, HQ_criterion = 2.1)
## S3 method for class 'pvargmm'
Andrews_Lu_MMSC(model, HQ_criterion = 2.1)
Arguments
model |
A PVAR model |
HQ_criterion |
Hannan Quinn criterion |
Value
BIC, AIC and HQIC
References
Andrews, D., Lu, B. (2001) Consistent Model and Momement Selection Procedures for GMM Estimation with Application to Dynamic Panel Data Models, Journal of Econometrics, 101(1), 123–164, doi:10.1016/S0304-4076(00)00077-4
Examples
data("ex3_abdata")
Andrews_Lu_MMSC(ex3_abdata)
Cigar data
Description
This panel data set consists of 46 U.S. States over the period 1963-1992.
Usage
Cigar
Format
The variables are:
- state
State abbreviation
- year
Year
- price
Price per pack of cigarettes
- pop
Population
- pop16
Population above the age of 16.
- cpi
Consumer price index with (1983=100
- ndi
Per capita disposable income
- sales
Cigarette sales in packs per capita
- pimin
Minimum price in adjoining states per pack of cigarettes
All variables all also available as logs.
Source
https://www.wiley.com/legacy/wileychi/baltagi/supp/Cigar.txt
References
Baltagi, B.H. and D. Levin (1992) "Cigarette taxation: raising revenues and reducing consumption", Structural Change and Economic Dynamics, 3(2), 321-335, doi:10.1016/0954-349X(92)90010-4.
Baltagi, B.H., J.M. Griffin and W. Xiong (2000) "To pool or not to pool: homogeneous versus heterogeneous estimators applied to cigarette demand", Review of Economics and Statistics, 82(1), 117-126, doi:10.1162/003465300558551.
Baltagi, B.H. (2013) "Econometric analysis of panel data", 5th edition, John Wiley and Sons Cigar
Swedish municipalities data
Description
The panel data set consists of 265 Swedish municipalities and covers 9 years (1979-1987).
Usage
Dahlberg
Format
The variables are:
- id
ID number for municipality
- year
Year
- expenditures
Total expenditures
- revenues
Total own-source revenues
- grants
Intergovernmental grants received by the municipality
Total expenditures contains both capital and current expenditures.
Expenditures, revenues, and grants are expressed in million SEK. The series are deflated and in per capita form. The implicit deflator is a municipality-specific price index obtained by dividing total local consumption expenditures at current prices by total local consumption expenditures at fixed (1985) prices.
The data are gathered by Statistics Sweden and obtained from Financial Accounts for the Municipalities (Kommunernas Finanser).
Source
http://qed.econ.queensu.ca/jae/2000-v15.4/dahlberg-johansson/
References
M. Dahlberg and E. Johansson (2000) "An examination of the dynamic behavior of local governments using GMM bootstrapping methods", Journal of Applied Econometrics, 15(4), 401-416, https://www.jstor.org/stable/2678589.
Employment UK data
Description
This data set contains labor demand data from a panel of firms in the United Kingdom. The panel is unlanced.
Usage
abdata
Format
The variables are:
- c1
Record ID
- ind
Firm index
- year
Year
- emp
Employment
- wage
Wage
- cap
Capital
- indoutpt
Industrial output
- n, w, k, ys
Logs of variables
- rec
Record number
- yearm1
Lagged year
- id
ID
- nL1, nL2, wL1, kL1, kL2, ysL1, ysL2
Lags of log variables
- yr1976 - yr1984
Time dummies
Source
https://www.stata-press.com/data/r13/abdata.dta
References
Arellano, M. and Bond, S. (1991) "Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations", The Review of Economic Studies, 58(2), 227-297, doi:10.2307/2297968
Empirical estimation of PVAR Impulse Response Confidence Bands
Description
Uses blockwise sampling of individuals (bootstrapping).
Usage
bootstrap_irf(
model,
typeof_irf,
n.ahead,
nof_Nstar_draws,
confidence.band,
mc.cores
)
## S3 method for class 'pvargmm'
bootstrap_irf(
model,
typeof_irf = c("OIRF", "GIRF"),
n.ahead,
nof_Nstar_draws,
confidence.band = 0.95,
mc.cores = getOption("mc.cores", 2L)
)
## S3 method for class 'pvarfeols'
bootstrap_irf(
model,
typeof_irf = c("OIRF", "GIRF"),
n.ahead,
nof_Nstar_draws,
confidence.band = 0.95,
mc.cores = getOption("mc.cores", 2L)
)
Arguments
model |
A PVAR model |
typeof_irf |
|
n.ahead |
n ahead steps |
nof_Nstar_draws |
Number of draws |
confidence.band |
Confidence band |
mc.cores |
Number of cores to use |
Examples
## Not run:
data("ex1_dahlberg_data")
ex1_dahlberg_data_bs <- bootstrap_irf(ex1_dahlberg_data, typeof_irf = c("GIRF"),
n.ahead = 8,
nof_Nstar_draws = 500,
confidence.band = 0.95,
mc.cores = 100)
## End(Not run)
data("ex1_dahlberg_data")
ex1_dahlberg_data_girf <- girf(ex1_dahlberg_data, n.ahead = 8, ma_approx_steps= 8)
data("ex1_dahlberg_data_bs")
plot(ex1_dahlberg_data_girf, ex1_dahlberg_data_bs)
Extract PVARFEOLS(p) Model Coefficients
Description
Extract PVARFEOLS(p) Model Coefficients
Usage
## S3 method for class 'pvarfeols'
coef(object, ...)
Arguments
object |
object |
... |
further arguments |
Extract PVAR(p) Model Coefficients
Description
Extract PVAR(p) Model Coefficients
Usage
## S3 method for class 'pvargmm'
coef(object, ...)
Arguments
object |
object |
... |
further arguments |
Examples
data("ex1_dahlberg_data")
coef(ex1_dahlberg_data)
Extract PVARHK(p) Model Coefficients
Description
Extract PVARHK(p) Model Coefficients
Usage
## S3 method for class 'pvarhk'
coef(object, ...)
Arguments
object |
object |
... |
further arguments |
Dahlberg results example 1
Description
Dahlberg results example 1
Usage
ex1_dahlberg_data
Format
An object of class pvargmm
of length 35.
Dahlberg bootstrap results example 1
Description
Dahlberg bootstrap results example 1
Usage
ex1_dahlberg_data_bs
Format
An object of class list
of length 4.
NLS Work 2 bootstrap results example 2
Description
NLS Work 2 bootstrap results example 2
Usage
ex2_nlswork2_data_bs
Format
An object of class list
of length 4.
Example results for Employment UK data
Description
Example results for Employment UK data
Usage
ex3_abdata
Format
An object of class pvargmm
of length 36.
Extract Coefficients and GOF Measures from a Statistical Object
Description
Extract Coefficients and GOF Measures from a Statistical Object
Usage
extract(model, ...)
## S3 method for class 'pvargmm'
extract(model, ...)
## S3 method for class 'pvarfeols'
extract(model, ...)
## S3 method for class 'pvarhk'
extract(model, ...)
Arguments
model |
Model |
... |
Further arguments passed to or from other methods |
Examples
data("ex1_dahlberg_data")
extract(ex1_dahlberg_data)
Forcast Error Variance Decomposition for PVAR
Description
Computes the forecast error variance decomposition of a PVAR(p) model.
Usage
fevd_orthogonal(model, n.ahead = 10)
## S3 method for class 'pvargmm'
fevd_orthogonal(model, n.ahead = 10)
## S3 method for class 'pvarfeols'
fevd_orthogonal(model, n.ahead = 10)
Arguments
model |
A PVAR model |
n.ahead |
Number of steps |
Details
The estimation is based on orthogonalised impulse response functions.
Value
A list with forecast error variances as matrices for each variable.
Note
A plot
method will be provided in future versions.
References
Pfaff, B. (2008) VAR, SVAR and SVEC Models: Implementation Within R Package vars, Journal of Statistical Software 27(4) https://www.jstatsoft.org/v27/i04/
See Also
pvargmm
for model estimaion
oirf
for orthogonal impulse response function
Examples
data("ex1_dahlberg_data")
fevd_orthogonal(ex1_dahlberg_data, n.ahead = 8)
Extracting Fixed Effects
Description
Extracting Fixed Effects
Usage
fixedeffects(model, ...)
## S3 method for class 'pvargmm'
fixedeffects(model, Only_Non_NA_rows = TRUE, ...)
Arguments
model |
Model |
... |
Further arguments passed to or from other methods |
Only_Non_NA_rows |
Filter NA rows |
Examples
data("ex1_dahlberg_data")
fixedeffects(ex1_dahlberg_data)
Generalized Impulse Response Function
Description
Generalized Impulse Response Function
Usage
girf(model, n.ahead, ma_approx_steps)
## S3 method for class 'pvargmm'
girf(model, n.ahead, ma_approx_steps)
Arguments
model |
A PVAR model |
n.ahead |
Any stable AR() model has an infinite MA representation. Hence any shock can be simulated infinitely into the future. For each forecast step t you need an additional MA term. |
ma_approx_steps |
MA approximation steps |
Examples
data("ex1_dahlberg_data")
girf(ex1_dahlberg_data, n.ahead = 8, ma_approx_steps= 8)
Sargan-Hansen-J-Test for Overidentification
Description
Sargan-Hansen-J-Test for Overidentification
Usage
hansen_j_test(model, ...)
## S3 method for class 'pvargmm'
hansen_j_test(model, ...)
Arguments
model |
A PVAR model |
... |
Further arguments passed to or from other methods |
Examples
data("ex1_dahlberg_data")
hansen_j_test(ex1_dahlberg_data)
Knit Print Method for pvarfeols
Description
Knit Print Method for pvarfeols
Usage
## S3 method for class 'pvarfeols'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
Knit Print Method for pvargmm
Description
Knit Print Method for pvargmm
Usage
## S3 method for class 'pvargmm'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
Knit Print Method for pvarhk
Description
Knit Print Method for pvarhk
Usage
## S3 method for class 'pvarhk'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
Knit Print summary Method
Description
Knit Print summary Method
Usage
## S3 method for class 'summary.pvarfeols'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
Knit Print summary Method
Description
Knit Print summary Method
Usage
## S3 method for class 'summary.pvargmm'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
Knit Print summary Method
Description
Knit Print summary Method
Usage
## S3 method for class 'summary.pvarhk'
knit_print(x, ...)
Arguments
x |
object |
... |
further arguments |
NLS Work 2 data
Description
NLS Work 2 data
Usage
nlswork2
Format
An object of class data.frame
with 16094 rows and 21 columns.
Orthogonal Impulse Response Function
Description
Orthogonal Impulse Response Function
Usage
oirf(model, n.ahead)
Arguments
model |
A PVAR model |
n.ahead |
Any stable AR() model has an infinite MA representation. Hence any shock can be simulated infinitely into the future. For each forecast step t you need an addtional MA term. |
Examples
data("ex1_dahlberg_data")
oirf(ex1_dahlberg_data, n.ahead = 8)
S3 plot method for pvarstability object, returns a ggplot
object
Description
S3 plot method for pvarstability object, returns a ggplot
object
Usage
## S3 method for class 'pvarstability'
plot(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for pvarfeols
Description
S3 Print Method for pvarfeols
Usage
## S3 method for class 'pvarfeols'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for pvargamm
Description
S3 Print Method for pvargamm
Usage
## S3 method for class 'pvargmm'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for pvarhk
Description
S3 Print Method for pvarhk
Usage
## S3 method for class 'pvarhk'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 print method for pvarstability object
Description
S3 print method for pvarstability object
Usage
## S3 method for class 'pvarstability'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for summary.pvarfeols
Description
S3 Print Method for summary.pvarfeols
Usage
## S3 method for class 'summary.pvarfeols'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for summary.pvargmm
Description
S3 Print Method for summary.pvargmm
Usage
## S3 method for class 'summary.pvargmm'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
S3 Print Method for summary.pvarhk
Description
S3 Print Method for summary.pvarhk
Usage
## S3 method for class 'summary.pvarhk'
print(x, ...)
Arguments
x |
object |
... |
further arguments |
P-value S3 Method
Description
P-value S3 Method
Usage
pvalue(object, ...)
## S3 method for class 'pvargmm'
pvalue(object, ...)
## S3 method for class 'pvarfeols'
pvalue(object, ...)
## S3 method for class 'pvarhk'
pvalue(object, ...)
Arguments
object |
Object |
... |
Further arguments |
Examples
data("ex1_dahlberg_data")
pvalue(ex1_dahlberg_data)
Fixed Effects Estimator for PVAR Model
Description
This function estimates a stationary PVAR with fixed effects.
Usage
pvarfeols(
dependent_vars,
lags,
exog_vars,
transformation = c("demean"),
data,
panel_identifier = c(1, 2)
)
Arguments
dependent_vars |
Dependent variables |
lags |
Number of lags of dependent variables |
exog_vars |
Exogenous variables |
transformation |
Demeaning |
data |
Data set |
panel_identifier |
Vector of panel identifiers |
Examples
data(Cigar)
ex1_feols <-
pvarfeols(dependent_vars = c("log_sales", "log_price"),
lags = 1,
exog_vars = c("cpi"),
transformation = "demean",
data = Cigar,
panel_identifier= c("state", "year"))
summary(ex1_feols)
GMM Estimation of Panel VAR Models
Description
Estimates a panel vector autoregressive (PVAR) model with fixed effects.
Usage
pvargmm(
dependent_vars,
lags,
predet_vars,
exog_vars,
transformation = "fd",
data,
panel_identifier = c(1, 2),
steps,
system_instruments = FALSE,
system_constant = TRUE,
pca_instruments = FALSE,
pca_eigenvalue = 1,
max_instr_dependent_vars,
max_instr_predet_vars,
min_instr_dependent_vars = 2L,
min_instr_predet_vars = 1L,
collapse = FALSE,
tol = 1e-09,
progressbar = TRUE
)
Arguments
dependent_vars |
Dependent variables |
lags |
Number of lags of dependent variables |
predet_vars |
Predetermined variables |
exog_vars |
Exogenous variables |
transformation |
First-difference |
data |
Data set |
panel_identifier |
Vector of panel identifiers |
steps |
|
system_instruments |
System GMM estimator |
system_constant |
Constant only available with the System GMM estimator in each equation |
pca_instruments |
Apply PCA to instruments matrix |
pca_eigenvalue |
Cut-off eigenvalue for PCA analysis |
max_instr_dependent_vars |
Maximum number of instruments for dependent variables |
max_instr_predet_vars |
Maximum number of instruments for predetermined variables |
min_instr_dependent_vars |
Minimum number of instruments for dependent variables |
min_instr_predet_vars |
Minimum number of instruments for predetermined variables |
collapse |
Use collapse option |
tol |
relative tolerance to detect zero singular values in |
progressbar |
show progress bar |
Details
The first vector autoregressive panel model (PVAR) was introduced by Holtz-Eakin et al. (1988). Binder et al. (2005) extend their equation-by-equation estimator for a PVAR model with only endogenous variables that are lagged by one period. We further improve this model in Sigmund and Ferstl (2021) to allow for p
lags of m
endogenous variables, k
predetermined variables and n
strictly exogenous variables.
Therefore, we consider the following stationary PVAR with fixed effects.
yi,t = μi + ∑l=1pAlyi,t-l + Bxi,t + Csi,t + εi,tLet yi,t ∈ ℜm be an m×1 vector of endogenous variables for the ith cross-sectional unit at time t. Let yi,t-l ∈ ℜm be an m×1 vector of lagged endogenous variables. Let xi,t ∈ ℜk be an k×1 vector of predetermined variables that are potentially correlated with past errors. Let si,t ∈ ℜn be an n×1 vector of strictly exogenous variables that neither depend on εi,t nor on εi,t-s for s = 1,…,T. The idiosyncratic error vector εi,t ∈ ℜm is assumed to be well-behaved and independent from both the regressors xi,t and si,t and the individual error component μi. Stationarity requires that all unit roots of the PVAR model fall inside the unit circle, which therefore places some constraints on the fixed effect μi. The cross section i and the time section t are defined as follows: i = 1,…,N and t = 1,…T. In this specification we assume parameter homogeneity for Al (m×m), B (m×k) and C (m×n) for all i.
A PVAR model is hence a combination of a single equation dynamic panel model (DPM) and a vector autoregressive model (VAR).
First difference and system GMM estimators for single equation dynamic panel data models have been implemented in the STATA package xtabond2
by Roodman (2009) and some of the features are also available in the R package plm.
For more technical details on the estimation, please refer to our paper Sigmund and Ferstl (2021).
There we define the first difference moment conditions (see Holtz-Eakin et al., 1988; Arellano and Bond, 1991), formalize the ideas to reduce the number of moment conditions by linear transformations of the instrument matrix and define the one- and two-step GMM estimator. Furthermore, we setup the system moment conditions as defined in Blundell and Bond (1998) and present the extended GMM estimator. In addition to the GMM-estimators we contribute to the literature by providing specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions. Finally, we implement the first difference and the forward orthogonal transformation to remove the fixed effects.
Value
A pvargmm
object containing the estimation results.
References
Arellano, M., Bond, S. (1991) Some Tests of Specification for Panel Sata: Monte Carlo Evidence and an Application to Employment Equations The Review of Economic Studies, 58(2), 277–297, doi:10.2307/2297968
Binder M., Hsiao C., Pesaran M.H. (2005) Estimation and Inference in Short Panel Vector Autoregressions with Unit Roots and Cointegration Econometric Theory, 21(4), 795–837, doi:10.1017/S0266466605050413
Blundell R., Bond S. (1998). Initial Conditions and Moment Restrictions in Dynamic Panel Data Models Journal of Econometrics, 87(1), 115–143, doi:10.1016/S0304-4076(98)00009-8
Holtz-Eakin D., Newey W., Rosen H.S. (1988) Estimating Vector Autoregressions with Panel Data, Econometrica, 56(6), 1371–1395, doi:10.2307/1913103
Roodman, D. (2009) How to Do xtabond2: An Introduction to Difference and System GMM in Stata The Stata Journal, 9(1), 86–136, https://www.stata-journal.com/article.html?article=st0159
Sigmund, M., Ferstl, R. (2021) Panel Vector Autoregression in R with the Package panelvar The Quarterly Review of Economics and Finance doi:10.1016/j.qref.2019.01.001
See Also
stability
for stability tests
oirf
and girf
for orthogonal and generalized impulse response functions (including bootstrapped confidence intervals)
coef.pvargmm
, se
, pvalue
, fixedeffects
for extrator functions for the most important results
fevd_orthogonal
for forecast error variance decomposition
Examples
## Not run:
library(panelvar)
data(abdata)
ex3_abdata <-pvargmm(
dependent_vars = c("emp"),
lags = 4,
predet_vars = c("wage"),
exog_vars = c("cap"),
transformation = "fd",
data = abdata,
panel_identifier = c("id", "year"),
steps = c("twostep"),
system_instruments = TRUE,
max_instr_dependent_vars = 99,
max_instr_predet_vars = 99,
min_instr_dependent_vars = 2L,
min_instr_predet_vars = 1L,
collapse = FALSE
)
## End(Not run)
data("ex3_abdata")
summary(ex3_abdata)
data("Dahlberg")
## Not run:
ex1_dahlberg_data <- pvargmm(dependent_vars = c("expenditures", "revenues", "grants"),
lags = 1,
transformation = "fod",
data = Dahlberg,
panel_identifier=c("id", "year"),
steps = c("twostep"),
system_instruments = FALSE,
max_instr_dependent_vars = 99,
max_instr_predet_vars = 99,
min_instr_dependent_vars = 2L,
min_instr_predet_vars = 1L,
collapse = FALSE
)
## End(Not run)
data("ex1_dahlberg_data")
summary(ex1_dahlberg_data)
Hahn Kuehrsteiner Estimator for PVAR Model
Description
This function estimates a stationary PVAR with fixed effects.
Usage
pvarhk(
dependent_vars,
exog_vars,
transformation = c("demean"),
data,
panel_identifier = c(1, 2)
)
Arguments
dependent_vars |
Dependent variables |
exog_vars |
Exogenous variables |
transformation |
Demeaning |
data |
Data set |
panel_identifier |
Vector of panel identifiers |
References
Hahn J., Kuehrsteiner G. (2002) Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both n and T Are Large, Econometrica, 70(4), 1639–1657
Examples
data(Dahlberg)
ex1_hk <-
pvarhk(dependent_vars = c("expenditures", "revenues", "grants"),
transformation = "demean",
data = Dahlberg,
panel_identifier= c("id", "year"))
summary(ex1_hk)
Extracting Level Residuals
Description
Extracting Level Residuals
Usage
residuals_level(model, ...)
## S3 method for class 'pvargmm'
residuals_level(model, ...)
Arguments
model |
Model |
... |
Further arguments passed to or from other methods |
Examples
data("ex1_dahlberg_data")
residuals_level(ex1_dahlberg_data)
Standard Error S3 Method
Description
Standard Error S3 Method
Usage
se(object, ...)
## S3 method for class 'pvargmm'
se(object, ...)
## S3 method for class 'pvarfeols'
se(object, ...)
## S3 method for class 'pvarhk'
se(object, ...)
Arguments
object |
Object |
... |
Further arguments |
Examples
data("ex1_dahlberg_data")
se(ex1_dahlberg_data)
Stability of PVAR(p) model
Description
Stability of PVAR(p) model
Usage
stability(model, ...)
## S3 method for class 'pvargmm'
stability(model, ...)
## S3 method for class 'pvarfeols'
stability(model, ...)
Arguments
model |
PVAR model |
... |
Further arguments |
Value
A pvarstability
object containing eigenvalue stability conditions
Examples
data("ex1_dahlberg_data")
stability_info <- stability(ex1_dahlberg_data)
print(stability_info)
plot(stability_info)
S3 Summary Method for pvarfeols
Description
S3 Summary Method for pvarfeols
Usage
## S3 method for class 'pvarfeols'
summary(object, ...)
Arguments
object |
object |
... |
further arguments |
S3 Summary Method for pvargmm
Description
S3 Summary Method for pvargmm
Usage
## S3 method for class 'pvargmm'
summary(object, ...)
Arguments
object |
object |
... |
further arguments |
S3 Summary Method for pvarhk
Description
S3 Summary Method for pvarhk
Usage
## S3 method for class 'pvarhk'
summary(object, ...)
Arguments
object |
object |
... |
further arguments |