
Package ‘nonprobsvy’
July 22, 2025

Type Package

Title Inference Based on Non-Probability Samples

Version 0.2.2

Description Statistical inference with non-probability samples when auxiliary information from exter-
nal sources such as probability samples or population totals or means is available. The pack-
age implements various methods such as inverse probability (propensity score) weight-
ing, mass imputation and doubly robust approach. De-
tails can be found in: Chen et al. (2020) <doi:10.1080/01621459.2019.1677241>, Yang et al. (2020) <doi:10.1111/rssb.12354>, Kim et al. (2021) <doi:10.1111/rssa.12696>, Yang et al. (2021) <https:
//www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.
htm> and Wu (2022) <https:
//www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm>. For de-
tails on the package and its functionalities see <doi:10.48550/arXiv.2504.04255>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://github.com/ncn-foreigners/nonprobsvy,

https://ncn-foreigners.ue.poznan.pl/nonprobsvy/

BugReports https://github.com/ncn-foreigners/nonprobsvy/issues

Depends R (>= 4.0.0), survey

Imports maxLik, stats, Matrix, MASS, ncvreg, RANN, Rcpp (>= 1.0.12),
nleqslv, doParallel, foreach, parallel, formula.tools

Suggests tinytest, covr, spelling

LinkingTo Rcpp, RcppArmadillo

Language en-US

NeedsCompilation yes

Author Łukasz Chrostowski [aut, ctb],
Maciej Beręsewicz [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8281-4301>),

Piotr Chlebicki [aut, ctb] (ORCID:
<https://orcid.org/0009-0006-4867-7434>)

1

https://doi.org/10.1080/01621459.2019.1677241
https://doi.org/10.1111/rssb.12354
https://doi.org/10.1111/rssa.12696
https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2021001/article/00004-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00002-eng.htm
https://doi.org/10.48550/arXiv.2504.04255
https://github.com/ncn-foreigners/nonprobsvy
https://ncn-foreigners.ue.poznan.pl/nonprobsvy/
https://github.com/ncn-foreigners/nonprobsvy/issues
https://orcid.org/0000-0002-8281-4301
https://orcid.org/0009-0006-4867-7434


2 admin

Maintainer Maciej Beręsewicz <maciej.beresewicz@ue.poznan.pl>

Repository CRAN

Date/Publication 2025-05-24 06:30:02 UTC

Contents
admin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
check_balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
coef.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
confint.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
control_inf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
control_out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
control_sel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
jvs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
method_glm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
method_nn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
method_npar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
method_pmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
method_ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
nobs.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
plot.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
pop_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
print.nonprob_summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
summary.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
update.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
weights.nonprob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 40

admin Admin data (non-probability survey)

Description

This is a subset of the Central Job Offers Database, a voluntary administrative data set (non-
probability sample). The data was slightly manipulated to ensure the relationships were preserved,
and then aligned. For more information about the CBOP, please refer to: https://oferty.praca.
gov.pl/portal.

Usage

admin

https://oferty.praca.gov.pl/portal
https://oferty.praca.gov.pl/portal


check_balance 3

Format

A single data.frame with 9,344 rows and 6 columns

id Identifier of an entity (company: legal or local).

private Whether the company is a private (1) or public (0) entity.

size The size of the entity: S – small (to 9 employees), M – medium (10-49) or L – large (over
49).

nace The main NACE code for a given entity: C, D.E, F, G, H, I, J, K.L, M, N, O, P, Q or R.S (14
levels, 3 combined: D and E, K and L, and R and S).

region The region of Poland (16 levels: 02, 04, ..., 32).

single_shift Whether an entity seeks employees on a single shift.

Examples

data("admin")
head(admin)

check_balance Checks the variable balance between the probability and non-
probability samples

Description

Function compares totals for auxiliary variables specified in the x argument for an object that
contains either IPW or DR estimator.

Usage

check_balance(x, object, dig)

Arguments

x formula specifying variables to check

object object of nonprob class

dig number of digits for rounding (default = 2)

Value

A list containing totals for non-probability and probability samples and their differences



4 coef.nonprob

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit"
)

ipw_est2 <- nonprob(
selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit",
control_selection = control_sel(est_method = "gee", gee_h_fun = 1))

## check the balance for the standard IPW
check_balance(~size+private, ipw_est1)

## check the balance for the calibrated IPW
check_balance(~size+private, ipw_est2)

## check balance for a more complicated example
check_balance(~ I(size=="M") + I(nace == "C"), ipw_est1)

coef.nonprob Returns coefficients of the underlying models

Description

Returns a list of coefficients for the selection and the outcome models

Usage

## S3 method for class 'nonprob'
coef(object, ...)

Arguments

object a nonprob class object

... other arguments passed to methods (currently not supported)



confint.nonprob 5

Value

a list with two entries:

• "coef_sel" a matrix of coefficients for the selection equation if possible, else NULL

• "coef_dr" a matrix of coefficients for the outcome equation(s) if possible, else NULL

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit", se = FALSE
)

coef(ipw_est1)

confint.nonprob Returns confidence intervals for estimated mean

Description

A generic function that returns the confidence interval for the estimated mean. If standard errors
have not been estimated, the function updates the nonprob object to obtain standard errors.

Usage

## S3 method for class 'nonprob'
confint(object, parm, level = 0.95, ...)

Arguments

object object of nonprob class.

parm names of parameters for which confidence intervals are to be computed, if miss-
ing all parameters will be considered.

level confidence level for intervals.

... additional arguments

Value

returns a data.frame with confidence intervals for the target variables



6 control_inf

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit", se = FALSE
)

confint(ipw_est1)

control_inf Control parameters for inference

Description

control_inf constructs a list with all necessary control parameters for statistical inference.

Usage

control_inf(
var_method = c("analytic", "bootstrap"),
rep_type = c("subbootstrap", "auto", "JK1", "JKn", "BRR", "bootstrap", "mrbbootstrap",

"Fay"),
vars_selection = FALSE,
vars_combine = FALSE,
bias_correction = FALSE,
num_boot = 500,
alpha = 0.05,
cores = 1,
keep_boot = TRUE,
nn_exact_se = FALSE

)

Arguments

var_method the variance method (default "analytic").

rep_type the replication type for weights in the bootstrap method for variance estimation
passed to survey::as.svrepdesign(). Default is "subbootstrap".

vars_selection default FALSE; if TRUE, then the variables selection model is used.

vars_combine whether variables should be combined after variable selection for doubly robust
estimators (default FALSE)



control_out 7

bias_correction

default FALSE; if TRUE, then the bias minimization estimation used during model
fitting.

num_boot the number of iteration for bootstrap algorithms.

alpha significance level (default 0.05).

cores the number of cores in parallel computing (default 1).

keep_boot a logical value indicating whether statistics from bootstrap should be kept (de-
fault TRUE)

nn_exact_se a logical value indicating whether to compute the exact standard error estimate
for nn or pmm estimator. The variance estimator for estimation based on nn or
pmm can be decomposed into three parts, with the third computed using covari-
ance between imputed values for units in the probability sample using predictive
matches from the non-probability sample. In most situations this term is negli-
gible and is very computationally expensive so by default it is set to FALSE, but
the recommended option is to set this value to TRUE before submitting the final
results.

Value

A list with selected parameters.

See Also

nonprob() – for fitting procedure with non-probability samples.

control_out Control parameters for outcome model

Description

control_out constructs a list with all necessary control parameters for outcome model.

Usage

control_out(
epsilon = 1e-08,
maxit = 100,
trace = FALSE,
k = 5,
penalty = c("SCAD", "lasso", "MCP"),
a_SCAD = 3.7,
a_MCP = 3,
lambda_min = 0.001,
nlambda = 100,
nfolds = 10,
treetype = c("kd", "rp", "ball"),



8 control_out

searchtype = c("standard", "priority"),
pmm_match_type = 1,
pmm_weights = c("none", "dist"),
pmm_k_choice = c("none", "min_var"),
pmm_reg_engine = c("glm", "loess"),
npar_loess = stats::loess.control(surface = "direct", trace.hat = "approximate")

)

Arguments

epsilon Tolerance for fitting algorithms. Default is 1e-6.

maxit Maximum number of iterations.

trace logical value. If TRUE trace steps of the fitting algorithms. Default is FALSE.

k The k parameter in the RANN::nn2() function. Default is 5.

penalty penalty algorithm for variable selection. Default is SCAD

a_SCAD The tuning parameter of the SCAD penalty for outcome model. Default is 3.7.

a_MCP The tuning parameter of the MCP penalty for outcome model. Default is 3.

lambda_min The smallest value for lambda, as a fraction of lambda.max. Default is .001.

nlambda The number of lambda values. Default is 100.

nfolds The number of folds during cross-validation for variables selection model.

treetype Type of tree for nearest neighbour imputation (for the NN and PMM estimator)
passed to RANN::nn2() function.

searchtype Type of search for nearest neighbour imputation (for the NN and PMM estima-
tor) passed to RANN::nn2() function.

pmm_match_type (Only for the PMM Estimator) Indicates how to select ’closest’ unit from non-
probability sample for each unit in probability sample. Either 1 (default) or 2
where 2 is matching by minimizing distance between ŷi for i ∈ SA and yj for
j ∈ SB and 1 is matching by minimizing distance between ŷi for i ∈ SA and ŷi
for i ∈ SA.

pmm_weights (Only for the PMM Estimator) Indicate how to weight k nearest neighbours in
SB to create imputed value for units in SA. The default value "none" indicates
that mean of k nearest y’s from SB should be used whereas "prop_dist" results
in weighted mean of these k values where weights are inversely proportional to
distance between matched values.

pmm_k_choice (Only for the PMM Estimator) Character value indicating how k hyper-parameter
should be chosen, by default "none" meaning k provided in control_outcome
argument will be used. For now the only other option "min_var" means that k
will be chosen by minimizing estimated variance of estimator for mean. Param-
eter k provided in this control list will be chosen as starting point.

pmm_reg_engine (Only for the PMM Estimator) whether to use parametric ("glm") or non-parametric
("loess") regression model for the outcome. The default is "glm".

npar_loess control parameters for the stats::loess via the stats::loess.control function.



control_sel 9

Value

List with selected parameters.

See Also

nonprob() – for fitting procedure with non-probability samples.

control_sel Control parameters for the selection model

Description

control_sel constructs a list with all necessary control parameters for selection model.

Usage

control_sel(
est_method = c("mle", "gee"),
gee_h_fun = 1,
optimizer = c("maxLik", "optim"),
maxlik_method = c("NR", "BFGS", "NM"),
optim_method = c("BFGS", "Nelder-Mead"),
epsilon = 1e-04,
maxit = 500,
trace = FALSE,
penalty = c("SCAD", "lasso", "MCP"),
a_SCAD = 3.7,
a_MCP = 3,
lambda = -1,
lambda_min = 0.001,
nlambda = 50,
nfolds = 10,
print_level = 0,
start_type = c("zero", "mle", "naive"),
nleqslv_method = c("Broyden", "Newton"),
nleqslv_global = c("dbldog", "pwldog", "cline", "qline", "gline", "hook", "none"),
nleqslv_xscalm = c("fixed", "auto"),
dependence = FALSE,
key = NULL

)

Arguments

est_method Method of estimation for propensity score model ("mle" or "gee"; default is
"mle").

gee_h_fun Smooth function for the generalized estimating equations (GEE) method.



10 control_sel

optimizer (for the est_method="mle" only) optimization function for maximum likeli-
hood estimation.

maxlik_method (for the est_method="mle" only) maximisation method that will be passed to
maxLik::maxLik() function. Default is NR.

optim_method (for the est_method="mle" only) maximisation method that will be passed to
stats::optim() function. Default is BFGS.

epsilon Tolerance for fitting algorithms by default 1e-6.

maxit Maximum number of iterations.

trace logical value. If TRUE trace steps of the fitting algorithms. Default is FALSE

penalty The penalization function used during variables selection.

a_SCAD The tuning parameter of the SCAD penalty for selection model. Default is 3.7.

a_MCP The tuning parameter of the MCP penalty for selection model. Default is 3.

lambda A user-specified λ value during variable selection model fitting.

lambda_min The smallest value for lambda, as a fraction of lambda.max. Default is .001.

nlambda The number of lambda values. Default is 50.

nfolds The number of folds for cross validation. Default is 10.

print_level this argument determines the level of printing which is done during the opti-
mization (for propensity score model) process.

start_type • Type of method for start points for model fitting taking the following values
– if zero then start is a vector of zeros (default for all methods).
– if mle (for est_method="gee" only) starting parameters are taken from

the result of the est_method="mle" method.

nleqslv_method (for the est_method="gee" only) The method that will be passed to nleqslv::nleqslv()
function.

nleqslv_global (for the est_method="gee" only) The global strategy that will be passed to
nleqslv::nleqslv() function.

nleqslv_xscalm (for the est_method="gee" only) The type of x scaling that will be passed to
nleqslv::nleqslv() function.

dependence logical value (default TRUE) informing whether samples overlap (NOT YET IM-
PLEMENTED, FOR FUTURE DEVELOPMENT).

key binary key variable allowing to identify the overlap (NOT YET IMPLEMENTED,
FOR FUTURE DEVELOPMENT).

Details

Smooth function (gee_h_fun) for the generalized estimating equations (GEE) method taking the
following values

• if 1 then h (x,θ) = π(x,θ)
x ,

• if 2 then h (x,θ) = x

Value

List with selected parameters.



extract 11

See Also

nonprob() – for fitting procedure with non-probability samples.

extract Extracts estimates from the nonprob class object

Description

Returns a data.frame of estimated mean(s) or standard error(s)

Usage

extract(object, what)

Arguments

object object of of the nonprob class

what what to extract: all estimates (mean(s), SE(s) and CI(s); "all"; default), esti-
mated mean(s) ("mean") or their standard error(s) ("se")

Value

a data.frame with selected information

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit"
)
extract(ipw_est1)
extract(ipw_est1, "se")



12 method_glm

jvs Job vacancy survey

Description

This is a subset of the Job Vacancy Survey from Poland (for one quarter). The data has been subject
to slight manipulation, but the relationships in the data have been preserved. For further details
on the JVS, please refer to the following link: https://stat.gov.pl/obszary-tematyczne/
rynek-pracy/popyt-na-prace/zeszyt-metodologiczny-popyt-na-prace,3,1.html.

Usage

jvs

Format

A single data.frame with 6,523 rows and 6 columns

id Identifier of an entity (company: legal or local).

private Whether the company is a private (1) or public (0) entity.

size The size of the entity: S – small (to 9 employees), M – medium (10-49) or L – large (over
49).

nace The main NACE code for a given entity: C, D.E, F, G, H, I, J, K.L, M, N, O, P, Q or R.S (14
levels, 3 combined: D and E, K and L, and R and S).

region The region of Poland (16 levels: 02, 04, ..., 32).

weight The final (calibrated) weight (w-weight). We do not have access to design weights (d-
weights).

Examples

data("jvs")
head(jvs)

method_glm Mass imputation using the generalized linear model method

Description

Model for the outcome for the mass imputation estimator using generalized linear models via the
stats::glm function. Estimation of the mean is done using SB probability sample or known
population totals.

https://stat.gov.pl/obszary-tematyczne/rynek-pracy/popyt-na-prace/zeszyt-metodologiczny-popyt-na-prace,3,1.html
https://stat.gov.pl/obszary-tematyczne/rynek-pracy/popyt-na-prace/zeszyt-metodologiczny-popyt-na-prace,3,1.html


method_glm 13

Usage

method_glm(
y_nons,
X_nons,
X_rand,
svydesign,
weights = NULL,
family_outcome = "gaussian",
start_outcome = NULL,
vars_selection = FALSE,
pop_totals = NULL,
pop_size = NULL,
control_outcome = control_out(),
control_inference = control_inf(),
verbose = FALSE,
se = TRUE

)

Arguments

y_nons target variable from non-probability sample

X_nons a model.matrix with auxiliary variables from non-probability sample

X_rand a model.matrix with auxiliary variables from non-probability sample

svydesign a svydesign object

weights case / frequency weights from non-probability sample

family_outcome family for the glm model

start_outcome start parameters (default NULL)

vars_selection whether variable selection should be conducted

pop_totals population totals from the nonprob function

pop_size population size from the nonprob function
control_outcome

controls passed by the control_out function
control_inference

controls passed by the control_inf function (currently not used, for further
development)

verbose parameter passed from the main nonprob function

se whether standard errors should be calculated

Details

Analytical variance

The variance of the mean is estimated based on the following approach

(a) non-probability part (SA with size nA; denoted as var_nonprob in the result)



14 method_glm

V̂1 =
1

n2
A

nA∑
i=1

êi

{
h(xi; β̂)

′ĉ
}
,

where êi = yi −m(xi; β̂) and

ĉ =

{
n−1
B

∑
i∈B

ṁ (xi;β
∗)h (xi;β

∗)
′
}−1

N−1
∑
i∈A

wiṁ (xi;β
∗) .

Under the linear regression model h
(
xi; β̂

)
= xi and ĉ =

(
n−1
A

∑
i∈A xix

′
i

)−1
N−1

∑
i∈B wixi.

(b) probability part (SB with size nB ; denoted as var_prob in the result)

This part uses functionalities of the {survey} package and the variance is estimated using the
following equation:

V̂2 =
1

N2

nB∑
i=1

nB∑
j=1

πij − πiπj

πij

m(xi; β̂)

πi

m(xi; β̂)

πj
.

Note that V̂2 in principle can be estimated in various ways depending on the type of the design and
whether population size is known or not.

Furthermore, if only population totals/means are known and assumed to be fixed we set V̂2 = 0.

Information on the case when svydesign is not available:

1. variance is estimated only for the non-probability part with V̂1 defined above.
2. point estimator of µ̂y for linear regression is estimated using µ′

xβ̂ where µx is the vector of
population means

3. for non-linear functions such as logistic or Poisson regression we use a simplification, i.e. we
report point estimate as exp(µ′

xβ̂) for Poisson and exp(µ′
xβ̂)

1+exp(µ′
xβ̂)

for logistic regression.

Value

an nonprob_method class which is a list with the following entries

model_fitted fitted model either an glm.fit or cv.ncvreg object
y_nons_pred predicted values for the non-probablity sample
y_rand_pred predicted values for the probability sample or population totals
coefficients coefficients for the model (if available)
svydesign an updated surveydesign2 object (new column y_hat_MI is added)
y_mi_hat estimated population mean for the target variable
vars_selection whether variable selection was performed
var_prob variance for the probability sample component (if available)
var_nonprob variance for the non-probability sampl component
var_total total variance, if possible it should be var_prob+var_nonprob if not, just a scalar
model model type (character "glm")
family family type (character "glm")



method_nn 15

References

Kim, J. K., Park, S., Chen, Y., & Wu, C. (2021). Combining non-probability and probability survey
samples through mass imputation. Journal of the Royal Statistical Society Series A: Statistics in
Society, 184(3), 941-963.

Examples

data(admin)
data(jvs)
jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight, strata = ~ size + nace + region, data = jvs)

res_glm <- method_glm(y_nons = admin$single_shift,
X_nons = model.matrix(~ region + private + nace + size, admin),
X_rand = model.matrix(~ region + private + nace + size, jvs),
svydesign = jvs_svy)

res_glm

method_nn Mass imputation using nearest neighbours matching method

Description

Mass imputation using nearest neighbours approach as described in Yang et al. (2021). The im-
plementation is currently based on RANN::nn2 function and thus it uses Euclidean distance for
matching units from SA (non-probability) to SB (probability). Estimation of the mean is done
using SB sample.

Usage

method_nn(
y_nons,
X_nons,
X_rand,
svydesign,
weights = NULL,
family_outcome = NULL,
start_outcome = NULL,
vars_selection = FALSE,
pop_totals = NULL,
pop_size = NULL,
control_outcome = control_out(),
control_inference = control_inf(),
verbose = FALSE,
se = TRUE

)



16 method_nn

Arguments

y_nons target variable from non-probability sample

X_nons a model.matrix with auxiliary variables from non-probability sample

X_rand a model.matrix with auxiliary variables from non-probability sample

svydesign a svydesign object

weights case / frequency weights from non-probability sample

family_outcome a placeholder (not used in method_nn)

start_outcome a placeholder (not used in method_nn)

vars_selection whether variable selection should be conducted

pop_totals a placeholder (not used in method_nn)

pop_size population size from the nonprob function
control_outcome

controls passed by the control_out function
control_inference

controls passed by the control_inf function

verbose parameter passed from the main nonprob function

se whether standard errors should be calculated

Details

Analytical variance

The variance of the mean is estimated based on the following approach

(a) non-probability part (SA with size nA; denoted as var_nonprob in the result)

This may be estimated using

V̂1 =
1

N2

SA∑
i=1

1− π̂B(xi)

π̂B(xi)
σ̂2(xi),

where π̂B(xi) is an estimator of propensity scores which we currently estimate using nA/N (con-
stant) and σ̂2(xi) is estimated using based on the average of (yi − y∗i )

2.

Chlebicki et al. (2025, Algorithm 2) proposed non-parametric mini-bootstrap estimator (without
assuming that it is consistent) but with good finite population properties. This bootstrap can be
applied using control_inference(nn_exact_se=TRUE) and can be summarized as follows:

1. Sample nA units from SA with replacement to create S′
A (if pseudo-weights are present inclu-

sion probabilities should be proportional to their inverses).

2. Match units from SB to S′
A to obtain predictions y∗=k−1

∑
k yk.

3. Estimate µ̂ = 1
N

∑
i∈SB

diy
∗
i .

4. Repeat steps 1-3 M times (we set M = 50 in our simulations; this is hard-coded).

5. Estimate V̂1 = var(µ̂) obtained from simulations and save it as var_nonprob.



method_nn 17

(b) probability part (SB with size nB ; denoted as var_prob in the result)

This part uses functionalities of the {survey} package and the variance is estimated using the
following equation:

V̂2 =
1

N2

n∑
i=1

n∑
j=1

πij − πiπj

πij

y∗i
πi

y∗j
πj

,

where y∗i and y∗j are values imputed imputed as an average of k-nearest neighbour, i.e. k−1
∑

k yk.
Note that V̂2 in principle can be estimated in various ways depending on the type of the design and
whether population size is known or not.

Value

an nonprob_method class which is a list with the following entries

model_fitted RANN::nn2 object

y_nons_pred predicted values for the non-probablity sample (query to itself)

y_rand_pred predicted values for the probability sample

coefficients coefficients for the model (if available)

svydesign an updated surveydesign2 object (new column y_hat_MI is added)

y_mi_hat estimated population mean for the target variable

vars_selection whether variable selection was performed (not implemented, for further develop-
ment)

var_prob variance for the probability sample component (if available)

var_nonprob variance for the non-probability sample component

var_tot total variance, if possible it should be var_prob+var_nonprob if not, just a scalar

model model type (character "nn")

family placeholder for the NN approach information

References

Yang, S., Kim, J. K., & Hwang, Y. (2021). Integration of data from probability surveys and big
found data for finite population inference using mass imputation. Survey Methodology, June 2021
29 Vol. 47, No. 1, pp. 29-58

Chlebicki, P., Chrostowski, Ł., & Beręsewicz, M. (2025). Data integration of non-probability and
probability samples with predictive mean matching. arXiv preprint arXiv:2403.13750.

Examples

data(admin)
data(jvs)
jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight, strata = ~ size + nace + region, data = jvs)

res_nn <- method_nn(y_nons = admin$single_shift,
X_nons = model.matrix(~ region + private + nace + size, admin),



18 method_npar

X_rand = model.matrix(~ region + private + nace + size, jvs),
svydesign = jvs_svy)

res_nn

method_npar Mass imputation using non-parametric model method

Description

Model for the outcome for the mass imputation estimator using loess via stats::loess. Estimation
of the mean is done using the SB probability sample.

Usage

method_npar(
y_nons,
X_nons,
X_rand,
svydesign,
weights = NULL,
family_outcome = "gaussian",
start_outcome = NULL,
vars_selection = FALSE,
pop_totals = NULL,
pop_size = NULL,
control_outcome = control_out(),
control_inference = control_inf(),
verbose = FALSE,
se = TRUE

)

Arguments

y_nons target variable from non-probability sample

X_nons a model.matrix with auxiliary variables from non-probability sample

X_rand a model.matrix with auxiliary variables from non-probability sample

svydesign a svydesign object

weights case / frequency weights from non-probability sample (default NULL)

family_outcome family for the glm model)

start_outcome a place holder (not used in method_npar)

vars_selection whether variable selection should be conducted

pop_totals a place holder (not used in method_npar)

pop_size population size from the nonprob function



method_npar 19

control_outcome

controls passed by the control_out function
control_inference

controls passed by the control_inf function

verbose parameter passed from the main nonprob function

se whether standard errors should be calculated

Details

Analytical variance

The variance of the mean is estimated based on the following approach

(a) non-probability part (SA with size nA; denoted as var_nonprob in the result)

V̂1 =
1

N2

nA∑
i=1

{ĝB(xi)}2 ê2i ,

where êi = yi − m̂(xi) is the residual and ĝB(xi) = {πB(xi)}−1 can be estimated various ways.
In the package we estimate ĝB(xi) using πB(xi) = E(R|x) as suggested by Chen et al. (2022, p.
6). In particular, we currently support this using stats::loesswith"gaussian"‘ family.

(b) probability part (SB with size nB ; denoted as var_prob in the result)

This part uses functionalities of the {survey} package and the variance is estimated using the
following equation:

V̂2 =
1

N2

nB∑
i=1

nB∑
j=1

πij − πiπj

πij

m̂(xi)

πi

m̂(xj)

πj
.

Note that V̂2 in principle can be estimated in various ways depending on the type of the design and
whether population size is known or not.

Value

an nonprob_method class which is a list with the following entries

model_fitted fitted model object returned by stats::loess

y_nons_pred predicted values for the non-probablity sample

y_rand_pred predicted values for the probability sample or population totals

coefficients coefficients for the model (if available)

svydesign an updated surveydesign2 object (new column y_hat_MI is added)

y_mi_hat estimated population mean for the target variable

vars_selection whether variable selection was performed

var_prob variance for the probability sample component (if available)

var_nonprob variance for the non-probability sampl component

model model type (character "npar")



20 method_pmm

References

Chen, S., Yang, S., & Kim, J. K. (2022). Nonparametric mass imputation for data integration.
Journal of Survey Statistics and Methodology, 10(1), 1-24.

Examples

set.seed(123123123)
N <- 10000
n_a <- 500
n_b <- 1000
n_b1 <- 0.7*n_b
n_b2 <- 0.3*n_b
x1 <- rnorm(N, 2, 1)
x2 <- rnorm(N, 2, 1)
y1 <- rnorm(N, 0.3 + 2*x1+ 2*x2, 1)
y2 <- rnorm(N, 0.3 + 0.5*x1^2+ 0.5*x2^2, 1)
strata <- x1 <= 2
pop <- data.frame(x1, x2, y1, y2, strata)
sample_a <- pop[sample(1:N, n_a),]
sample_a$w_a <- N/n_a
sample_a_svy <- svydesign(ids=~1, weights=~w_a, data=sample_a)
pop1 <- subset(pop, strata == TRUE)
pop2 <- subset(pop, strata == FALSE)
sample_b <- rbind(pop1[sample(1:nrow(pop1), n_b1), ],

pop2[sample(1:nrow(pop2), n_b2), ])
res_y_npar <- nonprob(outcome = y1 + y2 ~ x1 + x2,

data = sample_b,
svydesign = sample_a_svy,
method_outcome = "npar")

res_y_npar

method_pmm Mass imputation using predictive mean matching method

Description

Model for the outcome for the mass imputation estimator. The implementation is currently based
on RANN::nn2 function and thus it uses Euclidean distance for matching units from SA (non-
probability) to SB (probability) based on predicted values from model xi based either on method_glm
or method_npar. Estimation of the mean is done using SB sample.

This implementation extends Yang et al. (2021) approach as described in Chlebicki et al. (2025),
namely:

pmm_weights if k>1 weighted aggregation of the mean for a given unit is used. We use distance
matrix returned by RANN::nn2 function (pmm_weights from the control_out() function)

nn_exact_se if the non-probability sample is small we recommend using a mini-bootstrap ap-
proach to estimate variance from the non-probability sample (nn_exact_se from the control_inf()
function)



method_pmm 21

pmm_k_choice the main nonprob function allows for dynamic selection of k neighbours based on
the variance minimization procedure (pmm_k_choice from the control_out() function)

Usage

method_pmm(
y_nons,
X_nons,
X_rand,
svydesign,
weights = NULL,
family_outcome = "gaussian",
start_outcome = NULL,
vars_selection = FALSE,
pop_totals = NULL,
pop_size = NULL,
control_outcome = control_out(),
control_inference = control_inf(),
verbose = FALSE,
se = TRUE

)

Arguments

y_nons target variable from non-probability sample

X_nons a model.matrix with auxiliary variables from non-probability sample

X_rand a model.matrix with auxiliary variables from non-probability sample

svydesign a svydesign object

weights case / frequency weights from non-probability sample

family_outcome family for the glm model

start_outcome start parameters

vars_selection whether variable selection should be conducted

pop_totals a place holder (not used in method_pmm)

pop_size population size from the nonprob function
control_outcome

controls passed by the control_out function
control_inference

controls passed by the control_inf function

verbose parameter passed from the main nonprob function

se whether standard errors should be calculated

Details

Matching

In the package we support two types of matching:



22 method_pmm

1. ŷ − ŷ matching (default; control_out(pmm_match_type = 1)).

2. ŷ − y matching (control_out(pmm_match_type = 2)).

Analytical variance

The variance of the mean is estimated based on the following approach (a) non-probability part
(SA with size nA; denoted as var_nonprob in the result) is currently estimated using the non-
parametric mini-bootstrap estimator proposed by Chlebicki et al. (2025, Algorithm 2). It is not
proved to be consistent but with good finite population properties. This bootstrap can be applied
using control_inference(nn_exact_se=TRUE) and can be summarized as follows:

1. Sample nA units from SA with replacement to create S′
A (if pseudo-weights are present inclu-

sion probabilities should be proportional to their inverses).

2. Estimate regression model E[Y |X] = m(X, ·) based on S′
A from step 1.

3. Compute ν̂′(i, t) for t = 1, . . . , k, i ∈ SB using estimated m(x′, ·) and {(yj ,xj)|j ∈ S′
A}.

4. Compute
1

k

k∑
t=1

yν̂′(i) using Y values from S′
A.

5. Repeat steps 1-4 M times (we set (hard-coded) M = 50 in our code).

6. Estimate V̂1 = var(µ̂) obtained from simulations and save it as var_nonprob.

(b) probability part (SB with size nB ; denoted as var_prob in the result)

This part uses functionalities of the {survey} package and the variance is estimated using the
following equation:

V̂2 =
1

N2

nB∑
i=1

nB∑
j=1

πij − πiπj

πij

m(xi; β̂)

πi

m(xi; β̂)

πj
.

Note that V̂2 in principle can be estimated in various ways depending on the type of the design and
whether population size is known or not.

Value

an nonprob_method class which is a list with the following entries

model_fitted fitted model either an glm.fit or cv.ncvreg object

y_nons_pred predicted values for the non-probablity sample

y_rand_pred predicted values for the probability sample or population totals

coefficients coefficients for the model (if available)

svydesign an updated surveydesign2 object (new column y_hat_MI is added)

y_mi_hat estimated population mean for the target variable

vars_selection whether variable selection was performed

var_prob variance for the probability sample component (if available)

var_nonprob variance for the non-probability sampl component

model model type (character "pmm")

family depends on the method selected for estimating E(Y|X)



method_ps 23

Examples

data(admin)
data(jvs)
jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight, strata = ~ size + nace + region, data = jvs)

res_pmm <- method_pmm(y_nons = admin$single_shift,
X_nons = model.matrix(~ region + private + nace + size, admin),
X_rand = model.matrix(~ region + private + nace + size, jvs),
svydesign = jvs_svy)

res_pmm

method_ps Propensity Score Model Functions

Description

Function to specify the propensity score (PS) model for the inverse probability weighting estima-
tor. This function provides basic functions logistic regression with a given link function (currently
we support logit, probit and cloglog) with additional information about the analytic variance
estimator of the mean.

This is a function returns a list of functions that refer to specific estimation methods and variance
estimators when whether the IPW alone or the DR estimator is applied. The export of this function
is mainly because the functions are used in the variable selection algorithms.

Functions starting with make_log_like, make_gradient and make_hessian refer to the maximum
likelihood estimation as described in the Chen et al. (2020) paper. These functions take into account
different link functions defined through the link argument.

Functions make_link, make_link_inv, make_link_der, make_link_inv_der, make_link_inv_rev,
and make_link_inv_rev_der refer to specific link functions and are used in the estimation process.

Functions variance_covariance1 and variance_covariance2 refer to the variance estimator of
the IPW estimator as defined by Chen et al. (2020).

Functions b_vec_ipw, b_vec_dr and t_vec are specific functions defined in the Chen et al. (2020)
that are used in the variance estimator of the IPW or the DR.

Finally, var_nonprob is the non-probability component of the DR estimator as defined by Chen et
al. (2020).

Usage

method_ps(link = c("logit", "probit", "cloglog"), ...)

Arguments

link link for the PS model

... Additional, optional arguments.



24 method_ps

Value

A list of functions and elements for a specific link function with the following entries:

make_log_like log-likelihood function for a specific link function

make_gradient gradient of the loglik

make_hessian hessian of the loglik

make_link link function

make_link_inv inverse link function

make_link_der first derivative of the link function

make_link_inv_der first derivative of the the inverse link function

make_link_inv_rev defines 1/inv_link

make_link_inv_rev_der first derivative of 1/inv_link

variance_covariance1 for the IPW estimator: variance component for the non-probability sample

variance_covariance2 for the IPW estimator: variance component for the probability sample

b_vec_ipw for the IPW estimator: the b function as defined in the Chen et al. (2020, sec. 3.2, eq.
(9)-(10); sec 4.1)

b_vec_dr for the DR estimator: the b function as defined in the Chen et al. (2020, sec. 3.3., eq.
(14); sec 4.1)

t_vec for the DR estimator: the b function as defined in the Chen et al. (2020, sec. 3.3., eq. (14);
sec 4.1)

var_nonprob for the DR estimator: non-probability component of the variance for DR estimator

link name of the selected link function for the PS model (character)

model model type (character)

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz

Examples

# Printing information on the model selected

method_ps()

# extracting specific field

method_ps("cloglog")$make_gradient



nobs.nonprob 25

nobs.nonprob Returns the number of rows in samples

Description

Returns information on the number of rows of the probability sample (if provided) and non-probability
sample.

Usage

## S3 method for class 'nonprob'
nobs(object, ...)

Arguments

object a nonprob class object

... other arguments passed to methods (currently not supported)

Value

a named vector with row numbers

nonprob Inference with non-probability survey samples

Description

nonprob function provides an access to the various methods for inference based on non-probability
surveys (including big data). The function allows to estimate the population mean based on the
access to a reference probability sample (via the survey package), as well as totals or means of
covariates.

The package implements state-of-the-art approaches recently proposed in the literature: Chen et al.
(2020), Yang et al. (2020), Wu (2022) and uses the Lumley 2004 survey package for inference (if
a reference probability sample is provided).

It provides various inverse probability weighting (e.g. with calibration constraints), mass imputation
(e.g. nearest neighbour, predictive mean matching) and doubly robust estimators (e.g. that take into
account minimisation of the asymptotic bias of the population mean estimators).

The package uses the survey package functionality when a probability sample is available.

All optional parameters are set to NULL. The obligatory ones include data as well as one of the
following three: selection, outcome, or target – depending on which method has been selected.
In the case of outcome and target multiple y variables can be specified.

https://CRAN.R-project.org/package=survey


26 nonprob

Usage

nonprob(
data,
selection = NULL,
outcome = NULL,
target = NULL,
svydesign = NULL,
pop_totals = NULL,
pop_means = NULL,
pop_size = NULL,
method_selection = c("logit", "cloglog", "probit"),
method_outcome = c("glm", "nn", "pmm", "npar"),
family_outcome = c("gaussian", "binomial", "poisson"),
subset = NULL,
strata = NULL,
case_weights = NULL,
na_action = na.omit,
control_selection = control_sel(),
control_outcome = control_out(),
control_inference = control_inf(),
start_selection = NULL,
start_outcome = NULL,
verbose = FALSE,
se = TRUE,
...

)

Arguments

data a data.frame with dataset containing the non-probability sample

selection a formula (default NULL) for the selection (propensity) score model

outcome a formula (default NULL) for the outcome (target) model

target a formula (default NULL) with target variable(s). We allow multiple target vari-
ables (e.g. ~y1 + y2 + y3)

svydesign an optional svydesign2 class object containing a probability sample and design
weights

pop_totals an optional named vector with population totals of the covariates

pop_means an optional named vector with population means of the covariates

pop_size an optional double value with population size
method_selection

a character (default logit) indicating the method for the propensity score link
function.

method_outcome a character (default glm) indicating the method for the outcome model.

family_outcome a character (default gaussian) describing the error distribution and the link
function to be used in the model. Currently supports: gaussian with the identity
link, poisson and binomial.



nonprob 27

subset an optional vector specifying a subset of observations to be used in the fitting
process

strata an optional vector specifying strata (not yet supported, for further develop-
ment)

case_weights an optional vector of prior weights to be used in the fitting process. It is as-
sumed that this vector contains frequency or analytic weights (i.e. rows of the
data argument are repeated according to the values of the case_weights argu-
ment), not probability/design weights.

na_action a function which indicates what should happen when the data contain NAs (de-
fault na.omit and it is the only method currently supported)

control_selection

a list (default control_sel() result) indicating parameters to be used when
fitting the selection model for propensity scores. To change the parameters one
should use the control_sel() function

control_outcome

a list (default control_out() result) indicating parameters to be used when
fitting the model for the outcome variable. To change the parameters one should
use the control_out() function

control_inference

a list (default control_inf() result) indicating parameters to be used for in-
ference based on probability and non-probability samples. To change the pa-
rameters one should use the control_inf() function

start_selection

an optional vector with starting values for the parameters of the selection equa-
tion

start_outcome an optional vector with starting values for the parameters of the outcome equa-
tion

verbose a numerical value (default TRUE) whether detailed information on the fitting
should be presented

se Logical value (default TRUE) indicating whether to calculate and return standard
error of estimated mean.

... Additional, optional arguments

Details

Let y be the response variable for which we want to estimate the population mean, given by

µy =
1

N

N∑
i=1

yi.

For this purpose we consider data integration with the following structure. Let SA be the non-
probability sample with the design matrix of covariates as

XA =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xnA1
xnA2

· · · xnAp

 ,



28 nonprob

and vector of outcome variable

y =


y1
y2
...

ynA

 .

On the other hand, let SB be the probability sample with design matrix of covariates be

XB =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xnB1
xnB2

· · · xnBp

 .

Instead of a sample of units we can consider a vector of population sums in the form of τx =
(
∑

i∈U xi1,
∑

i∈U xi2, ...,
∑

i∈U xip) or means τx
N , where U refers to a finite population. Note

that we do not assume access to the response variable for SB . In general we make the following
assumptions:

1. The selection indicator of belonging to non-probability sample Ri and the response variable
yi are independent given the set of covariates xi.

2. All units have a non-zero propensity score, i.e., πA
i > 0 for all i.

3. The indicator variables RA
i and RA

j are independent for given xi and xj for i ̸= j.

There are three possible approaches to the problem of estimating population mean using non-
probability samples:

1. Inverse probability weighting – the main drawback of non-probability sampling is the un-
known selection mechanism for a unit to be included in the sample. This is why we talk about
the so-called "biased sample" problem. The inverse probability approach is based on the as-
sumption that a reference probability sample is available and therefore we can estimate the
propensity score of the selection mechanism. The estimator has the following form:

µ̂IPW =
1

NA

∑
i∈SA

yi
π̂A
i

.

For this purpose several estimation methods can be considered. The first approach is maximum
likelihood estimation with a corrected log-likelihood function, which is given by the following
formula

ℓ∗(θ) =
∑
i∈SA

log

{
π(xi,θ)

1− π(xi,θ)

}
+

∑
i∈SB

dBi log {1− π(xi,θ)} .

In the literature, the main approach to modelling propensity scores is based on the logit link
function. However, we extend the propensity score model with the additional link functions
such as cloglog and probit. The pseudo-score equations derived from ML methods can be
replaced by the idea of generalised estimating equations with calibration constraints defined
by equations.

U(θ) =
∑
i∈SA

h (xi,θ)−
∑
i∈SB

dBi π (xi,θ)h (xi,θ) .

Notice that for h (xi,θ) =
π(x,θ)

x We do not need a probability sample and can use a vector
of population totals/means.



nonprob 29

2. Mass imputation – This method is based on a framework where imputed values of outcome
variables are created for the entire probability sample. In this case, we treat the large sample
as a training data set that is used to build an imputation model. Using the imputed values
for the probability sample and the (known) design weights, we can build a population mean
estimator of the form:

µ̂MI =
1

NB

∑
i∈SB

dBi ŷi.

It opens the door to a very flexible method for imputation models. The package uses general-
ized linear models from stats::glm(), the nearest neighbour algorithm using RANN::nn2()
and predictive mean matching.

3. Doubly robust estimation – The IPW and MI estimators are sensitive to misspecified models
for the propensity score and outcome variable, respectively. To this end, so-called doubly
robust methods are presented that take these problems into account. It is a simple idea to
combine propensity score and imputation models during inference, leading to the following
estimator

µ̂DR =
1

NA

∑
i∈SA

d̂Ai (yi − ŷi) +
1

NB

∑
i∈SB

dBi ŷi.

In addition, an approach based directly on bias minimisation has been implemented. The
following formula

bias(µ̂DR) =E(µ̂DR − µ)

=E

{
1

N

N∑
i=1

(
RA

i

πA
i (x

T
i θ)

− 1)(yi −m(xT
i β))

}

+E

{
1

N

N∑
i=1

(RB
i d

B
i − 1)m(xT

i β)

}
,

lead us to system of equations

J(θ, β) =

{
J1(θ, β)
J2(θ, β)

}
=


∑N

i=1 R
A
i

{
1

π(xi,θ)
− 1

}
{yi −m(xi,β)}xi∑N

i=1
RA

i

π(xi,θ)
∂m(xi,β)

∂β −
∑

i∈SB
dBi

∂m(xi,β)
∂β

 ,

where m (xi,β) is a mass imputation (regression) model for the outcome variable and propen-
sity scores πA

i are estimated using a logit function for the model. As with the MLE and GEE
approaches we have extended this method to cloglog and probit links.

As it is not straightforward to calculate the variances of these estimators, asymptotic equivalents of
the variances derived using the Taylor approximation have been proposed in the literature. Details
can be found here. In addition, the bootstrap approach can be used for variance estimation.

The function also allows variables selection using known methods that have been implemented
to handle the integration of probability and non-probability sampling. In the presence of high-
dimensional data, variable selection is important, because it can reduce the variability in the estimate
that results from using irrelevant variables to build the model. Let U(θ,β) be the joint estimating
function for (θ,β). We define the penalized estimating functions as

Up (θ,β) = U (θ,β)−
{

qλθ
(|θ|) sgn(θ)

qλβ
(|β|) sgn(β)

}
,

https://ncn-foreigners.ue.poznan.pl/nonprobsvy-book/


30 nonprob

where λθ and qλβ
are some smooth functions. We let qλ (x) = ∂pλ

∂x , where pλ is some penalization
function. Details of penalization functions and techniques for solving this type of equation can
be found here. To use the variable selection model, set the vars_selection parameter in the
control_inf() function to TRUE. In addition, in the other control functions such as control_sel()
and control_out() you can set parameters for the selection of the relevant variables, such as the
number of folds during cross-validation algorithm or the lambda value for penalizations. Details
can be found in the documentation of the control functions for nonprob.

Value

Returns an object of the nonprob class (it is actually a list) which contains the following elements:

• call – the call of the nonprob function

• data – a data.frame passed from the nonprob function data argument

• X – a model.matrix containing data from probability (first nSB
rows) and non-probability

samples (next nSB
rows) if specified at a function call

• y – a list of vector of outcome variables if specified at a function call

• R – a numeric vector indicating whether a unit belongs to the probability (0) or non-
probability (1) units in the matrix X

• ps_scores – a numeric vector of estimated propensity scores for probability and non-
probability sample

• case_weights – a vector of case weights for non-probability sample based on the call

• ipw_weights – a vector of inverse probability weights for non-probability sample (if appli-
cable)

• control – a list of control functions based on the call

• output – a data.frame with the estimated means and standard errors for the variables speci-
fied in the target or outcome arguments

• SE – a data.frame with standard error of the estimator of the population mean, divided into
errors from probability and non-probability samples (if applicable)

• confidence_interval – a data.frame with confidence interval of population mean estima-
tor

• nonprob_size – a scalar numeric vector denoting the size of non-probability sample

• prob_size – a scalar numeric vector denoting the size of probability sample

• pop_size – a scalar numeric vector estimated population size derived from estimated
weights (non-probability sample) or known design weights (probability sample)

• pop_size_fixed – a logical value whether the population size was fixed (known) or esti-
mated (unknown)

• pop_totals – a numeric vector with the total values of the auxiliary variables derived from
a probability sample or based on the call

• pop_means – a numeric vector with the mean values of the auxiliary variables derived from
a probability sample or based on the call

https://ncn-foreigners.ue.poznan.pl/nonprobsvy-book/


nonprob 31

• outcome – a list containing information about the fitting of the mass imputation model.
Structure of the object is based on the method_outcome and family_outcome arguments
which point to specific methods as defined by functions method_* (if specified in the call)

• selection – a list containing information about the fitting of the propensity score model.
Structure of the object is based on the method_selection argument which point to specific
methods as defined by functions method_ps (if specified in the call)

• boot_sample – a matrix with bootstrap estimates of the target variable(s) (if specified)

• svydesign – a svydesign2 object (if specified)

• ys_rand_pred – a list of predicted values for the target variable(s) for the probability sample
(for the MI and DR estimator)

• ys_nons_pred – a list of predicted values for the target variable(s) for the non-probability
sample (for the MI and DR estimator)

• ys_resid – a list of residuals for the target variable(s) for the non-probability sample (for
the MI and DR estimator)

• estimator – a character vector with information what type of estimator was selected (one
of c("ipw", "mi", "dr")).

• selection_formula – a formula based on the selection argument (if specified)

• estimator_method – a character vector with information on the detailed method applied
(for the print method)

Author(s)

Łukasz Chrostowski, Maciej Beręsewicz, Piotr Chlebicki

References

Kim JK, Park S, Chen Y, Wu C. Combining non-probability and probability survey samples through
mass imputation. J R Stat Soc Series A. 2021;184:941– 963.

Shu Yang, Jae Kwang Kim, Rui Song. Doubly robust inference when combining probability and
non-probability samples with high dimensional data. J. R. Statist. Soc. B (2020)

Yilin Chen , Pengfei Li & Changbao Wu (2020) Doubly Robust Inference With Nonprobability
Survey Samples, Journal of the American Statistical Association, 115:532, 2011-2021

Shu Yang, Jae Kwang Kim and Youngdeok Hwang Integration of data from probability surveys and
big found data for finite population inference using mass imputation. Survey Methodology, June
2021 29 Vol. 47, No. 1, pp. 29-58

See Also

stats::optim() – For more information on the optim function used in the optim method of
propensity score model fitting.

maxLik::maxLik() – For more information on the maxLik function used in maxLik method of
propensity score model fitting.

ncvreg::cv.ncvreg() – For more information on the cv.ncvreg function used in variable selec-
tion for the outcome model.



32 nonprob

nleqslv::nleqslv() – For more information on the nleqslv function used in estimation process
of the bias minimization approach.

stats::glm() – For more information about the generalised linear models used during mass im-
putation process.

RANN::nn2() – For more information about the nearest neighbour algorithm used during mass
imputation process.

control_sel() – For the control parameters related to selection model.

control_out() – For the control parameters related to outcome model.

control_inf() – For the control parameters related to statistical inference.

Examples

# generate data based on Doubly Robust Inference With Non-probability Survey Samples (2021)
# Yilin Chen , Pengfei Li & Changbao Wu
set.seed(123)
# sizes of population and probability sample
N <- 20000 # population
n_b <- 1000 # probability
# data
z1 <- rbinom(N, 1, 0.7)
z2 <- runif(N, 0, 2)
z3 <- rexp(N, 1)
z4 <- rchisq(N, 4)

# covariates
x1 <- z1
x2 <- z2 + 0.3 * z2
x3 <- z3 + 0.2 * (z1 + z2)
x4 <- z4 + 0.1 * (z1 + z2 + z3)
epsilon <- rnorm(N)
sigma_30 <- 10.4
sigma_50 <- 5.2
sigma_80 <- 2.4

# response variables
y30 <- 2 + x1 + x2 + x3 + x4 + sigma_30 * epsilon
y50 <- 2 + x1 + x2 + x3 + x4 + sigma_50 * epsilon
y80 <- 2 + x1 + x2 + x3 + x4 + sigma_80 * epsilon

# population
sim_data <- data.frame(y30, y50, y80, x1, x2, x3, x4)
## propensity score model for non-probability sample (sum to 1000)
eta <- -4.461 + 0.1 * x1 + 0.2 * x2 + 0.1 * x3 + 0.2 * x4
rho <- plogis(eta)

# inclusion probabilities for probability sample
z_prob <- x3 + 0.2051
sim_data$p_prob <- n_b* z_prob/sum(z_prob)

# data



plot.nonprob 33

sim_data$flag_nonprob <- as.numeric(runif(N) < rho) ## sampling nonprob
sim_data$flag_prob <- as.numeric(runif(n_b) < sim_data$p_prob) ## sampling prob
nonprob_df <- subset(sim_data, flag_nonprob == 1) ## non-probability sample
svyprob <- svydesign(

ids = ~1, probs = ~p_prob,
data = subset(sim_data, flag_prob == 1),
pps = "brewer"

) ## probability sample

## mass imputation estimator
mi_res <- nonprob(

outcome = y30 + y50 + y80 ~ x1 + x2 + x3 + x4,
data = nonprob_df,
svydesign = svyprob

)
mi_res
## inverse probability weighted estimator
ipw_res <- nonprob(

selection = ~ x1 + x2 + x3 + x4,
target = ~y30 + y50 + y80,
data = nonprob_df,
svydesign = svyprob

)
ipw_res
## doubly robust estimator
dr_res <- nonprob(

outcome = y30 + y50 + y80 ~ x1 + x2 + x3 + x4,
selection = ~ x1 + x2 + x3 + x4,
data = nonprob_df,
svydesign = svyprob

)
dr_res

plot.nonprob Plots the estimated mean(s) and their confidence interval(s)

Description

Simple plotting method that compares the estimated mean(s) and CI(s) with the naive (uncorrected)
estimates.

Usage

## S3 method for class 'nonprob'
plot(x, ...)

Arguments

x the nonprob class object
... other arguments passed to the plot method (currently not supported)



34 pop_size

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit")

plot(ipw_est1)

pop_size Returns population size (estimated or fixed)

Description

Returns population size that is assumed to be

• fixed – if it is based on the pop_size argument,

• estimated – if it is based on the probability survey specified in the svydesign or based on
the estimated propensity scores for the non-probability sample.

Usage

pop_size(object)

Arguments

object object returned by the nonprob function.

Value

a scalar returning the value of the population size.

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,



print.nonprob_summary 35

data = admin, method_selection = "logit"
)

ipw_est2 <- nonprob(
selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit",
control_selection = control_sel(est_method = "gee", gee_h_fun = 1))

## estimated population size based on the non-calibrated IPW (MLE)
pop_size(ipw_est1)

## estimated population size based on the calibrated IPW (GEE)
pop_size(ipw_est2)

print.nonprob_summary Print method for the nonprob_summary object

Description

Print method for the nonprob_summary object which allows for specification what should be printed
or not.

Usage

## S3 method for class 'nonprob_summary'
print(x, resid = TRUE, pred = TRUE, digits = 4, ...)

Arguments

x a nonprob object

resid whether distribution of residuals should be printed (default is TRUE)

pred whether distribution of predictions should be printed (default is TRUE)

digits number of digits to be printed (default 4)

... further parameters passed to the print method (currently not supported)



36 summary.nonprob

summary.nonprob Summary statistics for model of the nonprob class

Description

Summarises the nonprob class object. The summary depends on the type of the estimator (i.e. IPW,
MI, DR)

Usage

## S3 method for class 'nonprob'
summary(object, ...)

Arguments

object object of the nonprob class

... Additional optional arguments

Value

An object of nonprob_summary class containing:

• call call

• estimator type of estimator

• control list of controls

• ipw_weights estimated IPW weights

• ipw_weights_total estimated IPW total (sum)

• ps_scores_nonprob estimated propensity scores for non-probability sample

• ps_scores_prob estimated propensity scores for probability sample

• case_weights case weights

• output estimated means and standard errors

• SE estimated standard errors of V1 and V2

• confidence_interval confidence intervals

• nonprob_size size of the non-probability sample

• prob_size size of the probability sample

• pop_size population size

• pop_size_fixed whether the population size is treated as fixed

• no_prob whether probability sample was provided

• outcome model details

• selection selection details

• estimator_method estimator method



update.nonprob 37

• selection_formula selection formula

• outcome_formula outcome formula

• vars_selection whether variable selection algorithm was applied

• vars_outcome variables of the outcome models

• ys_rand_pred predicted values for the random sample (if applies)

• ys_nons_pred predicted values for the non-probability sample

• ys_resid residuals for the non-probability sample

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit"
)
summary(ipw_est1)

update.nonprob The update method for the nonprob object with changed arguments or
parameters

Description

The update method for the nonprob class object that allows to re-estimate a given model with
changed parameters. This is in particular useful if a user would like to change method or estimate
standard errors if they were not estimated in the first place.

Usage

## S3 method for class 'nonprob'
update(object, ..., evaluate = TRUE)

Arguments

object the nonprob class object

... arguments passed to the nonprob class object

evaluate If true evaluate the new call else return the call



38 weights.nonprob

Value

returns a nonprob object

Author(s)

Maciej Beręsewicz

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit", se = FALSE
)

ipw_est1

update(ipw_est1, se = TRUE)

weights.nonprob Extracts the inverse probability weights

Description

A generic function weights that returns inverse probability weights (if present)

Usage

## S3 method for class 'nonprob'
weights(object, ...)

Arguments

object a nonprob class object

... other arguments passed to methods (currently not supported)

Value

A vector of weights or a NULL extracted from the nonprob object i.e. element "ipw_weights"



weights.nonprob 39

Examples

data(admin)
data(jvs)

jvs_svy <- svydesign(ids = ~ 1, weights = ~ weight,
strata = ~ size + nace + region, data = jvs)

ipw_est1 <- nonprob(selection = ~ region + private + nace + size,
target = ~ single_shift,
svydesign = jvs_svy,
data = admin, method_selection = "logit", se = FALSE
)

summary(weights(ipw_est1))



Index

∗ datasets
admin, 2
jvs, 12

admin, 2

check_balance, 3
coef.nonprob, 4
confint.nonprob, 5
control_inf, 6
control_inf(), 20, 30, 32
control_out, 7
control_out(), 20, 21, 30, 32
control_sel, 9
control_sel(), 30, 32

extract, 11

jvs, 12

maxLik::maxLik(), 10, 31
method_glm, 12
method_nn, 15
method_npar, 18
method_pmm, 20
method_ps, 23

ncvreg::cv.ncvreg(), 31
nleqslv::nleqslv(), 10, 32
nobs.nonprob, 25
nonprob, 25
nonprob(), 7, 9, 11

plot.nonprob, 33
pop_size, 34
print.nonprob_summary, 35

RANN::nn2, 15, 20
RANN::nn2(), 8, 29, 32

stats::glm(), 29, 32

stats::loess, 8
stats::loess.control, 8
stats::optim(), 10, 31
summary.nonprob, 36
survey::as.svrepdesign(), 6

update.nonprob, 37

weights.nonprob, 38

40


	admin
	check_balance
	coef.nonprob
	confint.nonprob
	control_inf
	control_out
	control_sel
	extract
	jvs
	method_glm
	method_nn
	method_npar
	method_pmm
	method_ps
	nobs.nonprob
	nonprob
	plot.nonprob
	pop_size
	print.nonprob_summary
	summary.nonprob
	update.nonprob
	weights.nonprob
	Index

