Type: | Package |
Title: | Neutrosophic Statistics |
Version: | 0.0.2 |
Maintainer: | Zsolt T. Kosztyan <kosztyan.zsolt@gtk.uni-pannon.hu> |
Description: | Analyzes data involving imprecise and vague information. Provides summary statistics and describes the characteristics of neutrosophic data, as defined by Florentin Smarandache (2013).<ISBN:9781599732749>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
LazyData: | true |
URL: | https://github.com/kzst/neutrostat |
Depends: | R (≥ 4.00) |
Imports: | moments, ntsDists, ggplot2, stats, |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2024-11-22 12:08:05 UTC; kzst |
Author: | Zahid Khan [aut], Zsolt T. Kosztyan [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2024-11-22 12:40:02 UTC |
Temperature Data of Five Different Cites in Pakistan for July 2022
Description
This dataset provides low and high recordings of daily temperature for five different citites (Gujranwala,Lahore,Islambad, Karachi and Sialkot ) of Pakistan for the specifed priod July 2022
Usage
data("citytemp")
Format
A data frame with 28 observations on the following 12 variables.
Day
a character vector
Date
a numeric vector
Gujranwala_Low
a numeric vector
Gujranwala_High
a numeric vector
Lahore_Low
a numeric vector
Lahore_High
a numeric vector
Karachi_Low
a numeric vector
Karachi_High
a numeric vector
Islamabad_Low
a numeric vector
Islamabad_High
a numeric vector
Sialkot_Low
a numeric vector
Sialkot_High
a numeric vector
Details
The data was collected for each city over 31 days in July 2022. It includes both the lower and upper temperature values, and can be analyzed using neutrosophic statistical approach.
Source
https://www.gismeteo.com/
References
Ishmal Shahzadi (2023): Neutrosophic Statistical Analysis of Temperature of Different Cities of Pakistan. Neutrosophic Sets and Systems, 53(1). doi:10.5281/zenodo.7535991
Examples
# list of temperature data for Gujranwala city
G <- mapply(function(low, high) list(c(low, high)),
citytemp$Gujranwala_Low,
citytemp$Gujranwala_High)
# Neutrosophic mean and standard deviation of temperature data for Gujranwala city
nmean(G)
nstd(G)
Average Daily Ingestion of Dioxin in Food Samples with Uncertainities
Description
This dataset contains the estimated average daily ingestion of dioxins from food samples collected across Japan, including uncertainties in the values. Dioxins are toxic chemical compounds that pose significant health risks.
Usage
data("dioxin")
Format
The format is: List of 17 numeric interval values
Details
This data provides an analysis of dioxin intake and its potential health impacts including exposure levels from various food sources in Japan.
Source
The dataset was collected and monitored by the Ministry of Environment, Japan, as reported in their environmental statistics
References
Zahid Khan, Mohammed M. A. Almazah, Omalsad Hamood Odhah, and Huda M. Alshanbari (2022): Generalized Pareto Model: Properties and Applications in Neutrosophic Data Modeling. Mathematical Problems in Engineering, 2022(1). doi:10.1155/2022/3686968
Examples
data(dioxin)
# Provide neutrosophic summary statistics
nsummary(dioxin)
Gold Prices Across Six Indian Cities from February 2022 to January 2023
Description
The dataset provides the monthly high and low prices (in rupees per gram) of 22-carat gold in six Indian cities: Chennai, Kolkatta,Bangal, .Data were collected from February 2022 to January 2023. This data can be used for neutrosophic statistical analysis of gold price trends.
Usage
data("goldprice")
Format
A data frame with 12 observations on the following 13 variables.
Month
a character vector
Chennai_Low
a numeric vector
Chennai_High
a numeric vector
Kolkatta_Low
a numeric vector
Kolkatta_High
a numeric vector
Bangalore_Low
a numeric vector
Bangalore_High
a numeric vector
Madurai_Low
a numeric vector
Madurai_High
a numeric vector
Hyderabad_Low
a numeric vector
Hyderabad_High
a numeric vector
Delhi_Low
a numeric vector
Delhi_High
a numeric vector
Details
Monthly high and low gold prices in Chennai, Kolkatta, and Bangalore. These can be analyzed using neutrosophic statistical methods to evaluate variations and trends.
Source
Indian Daily Gold Prices Android App
References
Kala Raja Mohan, R. Narmada Devi, Nagadevi Bala Nagaram, T. Bharathi, and Suresh Rasappan (2023): Neutrosophic Statistical Analysis on Gold Rate. Neutrosophic Sets and Systems, 60(1). doi:10.5281/zenodo.7535991
Examples
#list of low and high gold price for Chennai City
ch<- mapply(function(low, high) list(c(low, high)),
goldprice$Chennai_Low,
goldprice$Chennai_High)
# neutrosophic coefficient of variation
ncv(ch)
Interval addition of neutrosophic numbers
Description
This function is used to find sum of more than one imprecise data values.
Usage
interval_add(data)
Arguments
data |
List of neutrosophic numbers.This numeric list contains at least two neutrosophic intervals. Each interval value should contains two elements, lower and upper.If it crisp value is used,it is considered as an interval with same upper and lower value. |
Value
A numeric vector of length 2,indicating a summed value of neutrosophic intervals
Author(s)
Zahid Khan
References
Moore, R. E. (1979): Methods and applications of interval analysis.SIAM. doi:10.1137/1.9781611970906
Smarandache, F (2022):Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics(second version).Internation journal of neutrosophic science. 19(1),pp.148-165. doi:10.54216/IJNS.190111
See Also
Examples
#Addition of to neutrosopic numbers
x=list(c(5,10),c(10,20))
interval_add(x)
Interval conversion for neutrosophic numbers
Description
Interval conversion for neutrosophic numbers
Usage
interval_df(data)
Arguments
data |
data is a vector or a list of neutrosophic numbers |
Value
Data frame of neutrosophic numbers.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
Examples
# values are interval forms as required in neutrosophic data
data <- list(c(6, 6), c(2, 8), c(30,50), c(18, 24))
interval_df(data)
Division of the neutrosophic numbers
Description
This function is used to find an interval division of the neutrosophic numbers
Usage
interval_div(data)
Arguments
data |
List of neutrosophic numbers.This numeric list contains at least two neutrosophic intervals. Each interval value should contains two elements, lower and upper.If it crisp value is used,it is considered as an interval with same upper and lower value. |
Value
A numeric vector of length 2,indicating a divided value of neutrosophic intervals
Author(s)
Zahid Khan
References
Moore, R. E. (1979): Methods and applications of interval analysis.SIAM. doi:10.1137/1.9781611970906. Smarandache, F (2022):Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics(second version).Internation journal of neutrosophic science. 19(1),pp.148-165. doi:10.54216/IJNS.190111
See Also
Examples
#Division of neutrosopic numbers
x=list(c(8,4),c(2,4))
interval_div(x)
Multiplication of the neutrosophic numbers
Description
Interval multiplication of the neutrosophic numbers
Usage
interval_mul(data)
Arguments
data |
List of neutrosophic numbers.This numeric list contains at least two neutrosophic intervals. Each interval value should contains two elements, lower and upper.If it crisp value is used,it is considered as an interval with same upper and lower value. |
Value
A numeric vector of length 2,indicating a product value of neutrosophic intervals
Author(s)
Zahid Khan
References
Moore, R. E. (1979): Methods and applications of interval analysis.SIAM. doi:10.1137/1.9781611970906. Smarandache, F (2022):Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics(second version).Internation journal of neutrosophic science. 19(1),pp.148-165. doi:10.54216/IJNS.190111
See Also
Examples
#Multiplication of the neutrosopic numbers
x=list(c(2,5),c(7,8))
interval_mul(x)
Sorting of the neutrosophic data
Description
Sorting of neutrosophic values in the ascending order
Usage
interval_sort(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
List of intervals in asceding order.
Author(s)
Zahid Khan
References
Moore, R. E. (1979): Methods and applications of interval analysis.SIAM. doi:10.1137/1.9781611970906
See Also
Examples
data <- list(c(5, 10), c(4,6), c(2, 3))
sort <- interval_sort(data)
print(sort)
This function is used to find substraction of more than one neutrosophic number
Description
Interval subtraction of neutrosophic numbers.
Usage
interval_sub(data)
Arguments
data |
List of neutrosophic numbers.This numeric list contains at least two neutrosophic intervals. Each interval value should contains two elements, lower and upper.If it crisp value is used,it is considered as an interval with same upper and lower value. |
Value
A numeric vector of length 2,indicating a substracted value of neutrosophic intervals
Author(s)
Zahid Khan
References
Moore, R. E. (1979): Methods and applications of interval analysis.SIAM. doi:10.1137/1.9781611970906
Smarandache, F (2022):Neutrosophic Statistics is an extension of Interval Statistics, while Plithogenic Statistics is the most general form of statistics(second version).Internation journal of neutrosophic science. 19(1),pp.148-165. doi:10.54216/IJNS.190111.
See Also
Examples
#Substraction of two neutrosopic numbers
x=list(c(10,15),c(5,10))
interval_sub(x)
CV of the neutrosophic data
Description
Neutrosophic coefficient of variation is an interval value of the neutrosphic numbers
Usage
ncv(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
Interval cv value.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749 Hussein Al-Marshadi, Ali and Aslam, Muhammad and Abdullah, Alharbey (2021): Uncertainty-Based Trimmed Coefficient of Variation with Application, Journal of Mathematics, 2021(1), pages 5511904. Wiley Online Library. doi:10.1155/2021/5511904
Kandemir, Hacer Şengül and Aral, Nazlım Deniz and Karakaş, Murat and Et, Mikail (2024): Neutrosophic Statistical Analysis of Temperatures of Cities in the Southeastern Anatolia Region of Turkey, Neutrosophic Systems with Applications, 14, pp. 50-59. doi:10.61356/j.nswa.2024.119
See Also
Examples
data <- list(c(1, 2), c(4), c(2, 3))
mean <- nmean(data)
print(mean)
Neutrosophic Exponential Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Exponential distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dnexp(x, rate_l, rate_u)
pnexp(q, rate_l, rate_u)
qnexp(p, rate_l, rate_u)
rnexp(n, rate_l, rate_u, stats=FALSE)
plot_npdfexp(rate_l, rate_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Exponential Distribution",
x.label = "x", y.label = "Density")
plot_ncdfexp(rate_l, rate_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Exponential Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
rate_l |
A positive numeric value representing the lower bound of the rate parameter of the Neutrosophic Exponential distribution. |
rate_u |
A positive numeric value representing the upper bound of the rate parameter of the Neutrosophic Exponential distribution. This must be greater than or equal to |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Exponential distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Exponential distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dnexp
returns the PDF values
pnexp
returns the lower tail CDF values.
qnexp
returns the quantile values
rnexp
return random values with summary statistics of the simulated data
plot_npdfexp
returns PDF plot at given values of rate parameter
plot_ncdfexp
returns CDF plot at given values of rate parameter
Author(s)
Zahid Khan
References
Duan, W., Q., Khan, Z., Gulistan, M., Khurshid, A. (2021). Neutrosophic Exponential Distribution: Modeling and Applications for Complex Data Analysis, Complexity, 2021, 1-8.doi:10.1155/2021/5970613
Examples
# random number with summary statistics
rnexp(10, rate_l=2, rate_u=4, stats = TRUE)
# PDF values
x <- c(1, 2, 3) # Values at which to evaluate the PDF
rate_l <- 0.5
rate_u <- 2.0
dnexp(x, rate_l, rate_u)
# CDF values
q <- c(2, 3, 3.5)
rate_l <- 0.5
rate_u <- 2.0
pnexp(q, rate_l, rate_u)
# Quantile values
p <- 0.5 # Probability at which to evaluate the quantile
rate_l <- 0.5
rate_u <- 2.0
qnexp(p, rate_l, rate_u)
# PDF PLOT
plot_npdfexp(rate_l = 1, rate_u = 2, x = c(0, 5))
# CDF PLOT
plot_ncdfexp(rate_l = 1, rate_u = 2, x = c(0, 5))
Neutrosophic Gamma Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Gamma distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dngam(x, scale_l, scale_u, shape_l, shape_u)
pngam(q, scale_l, scale_u, shape_l, shape_u)
qngam(p, scale_l, scale_u, shape_l, shape_u)
rngam(n, scale_l, scale_u, shape_l, shape_u, stats = FALSE)
plot_npdfgam(scale_l, scale_u, shape_l, shape_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Gamma Distribution",
x.label = "x", y.label = "Density")
plot_ncdfgam(scale_l, scale_u, shape_l, shape_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Gamma Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
scale_l |
A positive numeric value representing the lower bound of the scale parameter of the Neutrosophic Gamma distribution. |
scale_u |
A positive numeric value representing the upper bound of the scale parameter of the Neutrosophic Gamma distribution. This must be greater than or equal to |
shape_l |
A positive numeric value representing the lower bound of the shape parameter of the Neutrosophic Gamma distribution. |
shape_u |
A positive numeric value representing the upper bound of the shape parameter of the Neutrosophic Gamma distribution. |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Gamma distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Gamma distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dngam
returns the PDF values
pngam
returns the lower tail CDF values.
qngam
returns the quantile values
rngam
return random values with summary statistics of the simulated data
plot_npdfgam
returns PDF plot at given values of distributional parameters
plot_ncdfgam
returns CDF plot at given values of distributional parameters
Author(s)
Zahid Khan
References
Khan Z, Al-Bossly A, Almazah M, Alduais FS. (2021). On Statistical Development of Neutrosophic Gamma Distribution with Applications to Complex Data Analysis, Complexity, 2021, 1-8.doi:10.1155/2021/3701236
Examples
# random number Generation with summary statistics
rngam(10, scale_l = 2, scale_u = 4, shape_l = 1, shape_u = 1, stats = TRUE)
# PDF values
x <- 2
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2
dngam(x, scale_l, scale_u, shape_l, shape_u)
# CDF values
q <- 1.5
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2.0
pngam(q, scale_l, scale_u, shape_l, shape_u)
# Quantile values
p <- 0.5
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2
qngam(p, scale_l, scale_u, shape_l, shape_u)
# PDF PLOT
scale_l <- 1
scale_u <- 1
shape_l<-2
shape_u<-3
plot_npdfgam(scale_l, scale_u, shape_l, shape_u, x = c(0, 5))
# CDF PLOT
scale_l <- 1
scale_u <- 1
shape_l<-2
shape_u<-3
plot_ncdfgam(scale_l, scale_u, shape_l, shape_u, x = c(0, 5))
Neutrosophic Coefficient of Kurtosis
Description
Neutrosophic kurtosis is an interval value that measures the flatness and peakedness of neutrosophic data using the method of moments
Usage
nkur(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
An interval value of coefficeint of Kurtosis.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
Aslam, Muhammad (2021): A study on skewness and kurtosis estimators of wind speed distribution under indeterminacy, Theoretical and Applied Climatology, 143(3), pp. 1227-1234. doi:10.1007/s00704-020-03509-5
See Also
nsk
.
Examples
data <- list(c(1, 2), c(4), c(2, 3),c(6,8),c(12,20),c(20,30))
k <- nkur(data)
print(k)
Neutrosophic Laplace Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Laplace distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dnlap(x, scale_l, scale_u, location_l, location_u)
pnlap(q, scale_l, scale_u, location_l, location_u)
qnlap(p, scale_l, scale_u, location_l, location_u)
rnlap(n, scale_l, scale_u, location_l, location_u, stats = FALSE)
plot_npdflap(scale_l, scale_u, location_l, location_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Laplace Distribution",
x.label = "x", y.label = "Density")
plot_ncdflap(scale_l, scale_u, location_l, location_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Laplace Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
scale_l |
A positive numeric value representing the lower bound of the scale parameter of the Neutrosophic Laplace distribution. |
scale_u |
A positive numeric value representing the upper bound of the scale parameter of the Neutrosophic Laplace distribution. This must be greater than or equal to |
location_l |
A positive numeric value representing the lower bound of the location parameter of the Neutrosophic Laplace distribution. |
location_u |
A positive numeric value representing the upper bound of the location parameter of the Neutrosophic Laplace distribution. |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Laplace distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Laplace distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dnlap
returns the PDF values
pnlap
returns the lower tail CDF values.
qnlap
returns the quantile values
rnlap
return random values with summary statistics of the simulated data
plot_npdflap
returns PDF plot at given values of distributional parameters
plot_ncdflap
returns CDF plot at given values of distributional parameters
Author(s)
Zahid Khan
References
Musa A, Khan Z. (2024). Neutrosophic Laplace Distribution with Properties and Applications in Decision Making. International Journal of Neutrosophic Science, 2024, 73-84. doi:10.54216/IJNS.230106.
Examples
# random number Generation with summary statistics
rnlap(10, scale_l = 2, scale_u = 4, location_l = 1, location_u = 1, stats = TRUE)
# PDF values
x <- 2
scale_l <- 0.5
scale_u <- 1
location_l<-0
location_u<-0
dnlap(x, scale_l, scale_u, location_l, location_u)
# CDF values
q <- 1.5
scale_l <- 1
scale_u <- 2
location_l<-0
location_u<-0
pnlap(q, scale_l, scale_u, location_l, location_u)
# Quantile values
p <- 0.1
scale_l <- 0.5
scale_u <- 0.7
location_l<-0
location_u<-0
qnlap(p, scale_l, scale_u, location_l, location_u)
# PDF PLOT
scale_l <- 0.5
scale_u <- 1
location_l<-0
location_u<-0
plot_npdflap(scale_l, scale_u, location_l, location_u, x = c(-5, 5))
# CDF PLOT
scale_l <- 0.5
scale_u <- 1
location_l<-0
location_u<-0
plot_ncdflap(scale_l, scale_u, location_l, location_u, x = c(-5, 5))
Mean of the neutrosophic data
Description
Neutrosophic mean is an interval value of the neutrosphic numbers
Usage
nmean(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
Interval mean value.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(c(1, 2), c(4), c(2, 3))
mean <- nmean(data)
print(mean)
Median of the neutrosophic data
Description
Finding the median of the neutrosophic interval values
Usage
nmedian(data)
Arguments
data |
list of neutrosophic numbers |
Value
interval median value.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(c(5, 10), c(4,6), c(2, 3))
med <- nmedian(data)
print(med)
Neutrosophic Normal Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Normal distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dnnorm(x, sd_l, sd_u, mean_l, mean_u)
pnnorm(q, sd_l, sd_u, mean_l, mean_u)
qnnorm(p, sd_l, sd_u, mean_l, mean_u)
rnnorm(n, sd_l, sd_u, mean_l, mean_u, stats = FALSE)
plot_npdfnorm(sd_l, sd_u, mean_l, mean_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Normal Distribution",
x.label = "x", y.label = "Density")
plot_ncdfnorm(sd_l, sd_u, mean_l, mean_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Normal Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
sd_l |
A positive numeric value representing the lower bound of the sd parameter of the Neutrosophic Normal distribution. |
sd_u |
A positive numeric value representing the upper bound of the sd parameter of the Neutrosophic Normal distribution. This must be greater than or equal to |
mean_l |
A numeric value representing the lower bound of the mean parameter of the Neutrosophic Normal distribution. |
mean_u |
A numeric value representing the upper bound of the mean parameter of the Neutrosophic Normal distribution. |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Normal distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Normal distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dnnorm
returns the PDF values
pnnorm
returns the lower tail CDF values.
qnnorm
returns the quantile values
rnnorm
return random values with summary statistics of the simulated data
plot_npdfnorm
returns PDF plot at given values of distributional parameters
plot_ncdfnorm
returns CDF plot at given values of distributional parameters
Author(s)
Zahid Khan
References
Patro SK, Smarandache F. (2016). The neutrosophic statistical distribution, more problems, more solutions. Neutrosophic Sets and Systems, 12, 73-79.doi:10.5281/zenodo.571153
Examples
# random number Generation with summary statistics
rnnorm(10, sd_l = 2, sd_u = 4, mean_l = 1, mean_u = 1, stats = TRUE)
# PDF values
x <- 2
sd_l <- 0.5
sd_u <- 1
mean_l<-0
mean_u<-0
dnnorm(x, sd_l, sd_u, mean_l, mean_u)
# CDF values
q <- 1.5
sd_l <- 1
sd_u <- 2
mean_l<-0
mean_u<-0
pnnorm(q, sd_l, sd_u, mean_l, mean_u)
# Quantile values
p <- 0.1
sd_l <- 0.5
sd_u <- 0.7
mean_l<-0
mean_u<-0
qnnorm(p, sd_l, sd_u, mean_l, mean_u)
# PDF PLOT
sd_l <- 0.5
sd_u <- 1
mean_l<-0
mean_u<-0
plot_npdfnorm(sd_l, sd_u, mean_l, mean_u, x = c(-5, 5))
# CDF PLOT
sd_l <- 0.5
sd_u <- 1
mean_l<-0
mean_u<-0
plot_ncdfnorm(sd_l, sd_u, mean_l, mean_u, x = c(-5, 5))
Quantiles of the neutrosophic data
Description
Neutrosophic quantiles provide three quantile interval values of the neutrosophic data
Usage
nquant(data)
Arguments
data |
A list of neutrosophic numbers.Each neutrosophic number is represented by an interval. |
Value
A named list containing the first, second and third quantile interval values where each quantile is represented as an interval value
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(c(5, 10), c(4,6), c(2, 3),c(4,8))
q <- nquant(data)
print(q)
Neutrosophic Rayleigh Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Rayleigh distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dnray(x, scale_l, scale_u)
pnray(q, scale_l, scale_u)
qnray(p, scale_l, scale_u)
rnray(n, scale_l, scale_u, stats=FALSE)
plot_npdfray(scale_l, scale_u, x = c(0, 5),color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Rayleigh Distribution",
x.label = "x", y.label = "Density")
plot_ncdfray(scale_l, scale_u, x = c(0, 5),color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Rayleigh Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
scale_l |
A positive numeric value representing the lower bound of the scale parameter of the Neutrosophic Rayleigh distribution. |
scale_u |
A positive numeric value representing the upper bound of the scale parameter of the Neutrosophic Rayleigh distribution. This must be greater than or equal to |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Rayleigh distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Rayleigh distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dnray
returns the PDF values
pnray
returns the lower tail CDF values
qnray
returns the quantile values
rnray
return random values with summary statistics of the simulated data
plot_npdfexp
returns PDF plot at given values of scale parameter
plot_ncdfexp
returns CDF plot at given values of scale parameter
Author(s)
Zahid Khan
References
Khan, Z., Gulistan, M., Kausar, N., Park, C. (2021). Neutrosophic Rayleigh Model With Some Basic Characteristics and Engineering Applications. IEEE Access, 9, 71277-71283. doi:10.1109/ACCESS.2021.3078150.
Examples
# random number with summary statistics
rnray(10, scale_l=2, scale_u=4, stats = TRUE)
# PDF values
x <- c(1, 2, 3) # Values at which to evaluate the PDF
scale_l <- 0.5
scale_u <- 2.0
dnray(x, scale_l, scale_u)
# CDF values
q <- c(2, 3, 3.5)
scale_l <- 0.5
scale_u <- 2.0
pnray(q, scale_l, scale_u)
# Quantile values
p <- 0.5 # Probability at which to evaluate the quantile
scale_l <- 0.5
scale_u <- 2.0
qnray(p, scale_l, scale_u)
# PDF PLOT
scale_l <- 0.5 # Minimum rate
scale_u <- 2 # Maximum rate
plot_npdfray(scale_l, scale_u, x = c(0, 3))
# CDF PLOT
scale_l <- 0.5 # Minimum rate
scale_u <- 2.0 # Maximum rate
plot_ncdfray(scale_l, scale_u, x = c(0, 3),title = "")
Neutrosophic Pearson Coefficient of Skewness
Description
Neutrosophic skewness is imprecise value that measures the asymmetery of neutrosophic data using the method of moments
Usage
nsk(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
An interval value of Pearson coefficeint of skewness.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749 Aslam, Muhammad (2021): A study on skewness and kurtosis estimators of wind speed distribution under indeterminacy, Theoretical and Applied Climatology, 143(3), pp. 1227-1234.doi:10.1007/s00704-020-03509-5
See Also
Examples
data <- list(c(1, 2), c(4), c(2, 3),c(6,8),c(12,20))
s <- nsk(data)
print(s)
Standard deviation of the neutrosophic data
Description
Neutrosophic standard deviation is an interval value of the neutrosphic numbers
Usage
nstd(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
Interval dispersion value.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(6, c(2, 5), 30, c(18, 24))
sd <- nstd(data)
print(sd)
summary of the neutrosophic data
Description
Descriptive summary of the neutrosphic numbers
Usage
nsummary(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
Data frame of descriptive neutrosophic statistics.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(c(1, 2), c(4), c(2, 3),c(5,11),c(4,8),c(20,25))
s <- nsummary(data)
print(s)
Variance of the neutrosophic data
Description
Neutrosophic variance is an interval value of the neutrosphic numbers
Usage
nvar(data)
Arguments
data |
data is a list of neutrosophic numbers |
Value
Interval dispersion value.
Author(s)
Zahid Khan
References
Florentin Smarandache (2014): Introduction to Neutrosophic Statistics. ISBN: 9781599732749
See Also
Examples
data <- list(6, c(2, 5), 30, c(18, 24))
variance <- nvar(data)
print(variance)
Neutrosophic Weibull Distribution with Characteristics
Description
Computes various properties of the Neutrosophic Weibull distribution, including its density, cumulative distribution function (CDF), quantiles,random numbers with summary statistics,PDF and CDF plots of the distribution.
Usage
dnwbl(x, scale_l, scale_u, shape_l, shape_u)
pnwbl(q, scale_l, scale_u, shape_l, shape_u)
qnwbl(p, scale_l, scale_u, shape_l, shape_u)
rnwbl(n, scale_l, scale_u, shape_l, shape_u, stats = FALSE)
plot_npdfwbl(scale_l, scale_u, shape_l, shape_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "PDF Neutrosophic Weibull Distribution",
x.label = "x", y.label = "Density")
plot_ncdfwbl(scale_l, scale_u, shape_l, shape_u, x = c(0, 5),
color.fill = "lightblue", color.line = "blue",
title = "CDF Neutrosophic Weibull Distribution",
x.label = "x", y.label = "Cumulative Probability")
Arguments
x |
A numeric vector of observations for which the function will compute the corresponding distribution values. |
n |
number of random generated values |
scale_l |
A positive numeric value representing the lower bound of the scale parameter of the Neutrosophic Weibull distribution. |
scale_u |
A positive numeric value representing the upper bound of the scale parameter of the Neutrosophic Weibull distribution. This must be greater than or equal to |
shape_l |
A positive numeric value representing the lower bound of the shape parameter of the Neutrosophic Weibull distribution. |
shape_u |
A positive numeric value representing the upper bound of the shape parameter of the Neutrosophic Weibull distribution. |
p |
A vector of probabilities for which the function will compute the corresponding quantile values |
q |
A vector of quantiles for which the function will compute the corresponding CDF values |
stats |
Logical; if |
color.fill |
A string representing the color for neutrosophic region. |
color.line |
A string representing the color used for the line of the PDF or CDF in the plots. |
title |
A string representing the title of the plot. |
x.label |
A string representing the label for the x-axis. |
y.label |
A string representing the label for the y-axis. |
Details
The function computes various properties of the Neutrosophic Weibull distribution. Depending on the function variant used (e.g., density, CDF, quantiles), it will return the corresponding statistical measure for each input value of x
in case of random number generation from Neutrosophic Weibull distribution. Moreover basic plots of PDF and CDF can be visualized.
Value
dnwbl
returns the PDF values
pnwbl
returns the lower tail CDF values.
qnwbl
returns the quantile values
rnwbl
return random values with summary statistics of the simulated data
plot_npdfwbl
returns PDF plot at given values of distributional parameters
plot_ncdfwbl
returns CDF plot at given values of distributional parameters
Author(s)
Zahid Khan
References
Khan, Kahid; Gulistan, Muhammad; Lane-Krebs, Katrina; Salem, Sultan (2023). Neutrophasic Weibull model with applications to survival studies. CQUniversity, 25-42.doi:10.1016/B978-0-323-99456-9.00007-6
Examples
# random number Generation with summary statistics
rnwbl(5, scale_l = 2, scale_u = 4, shape_l = 1, shape_u = 1, stats = TRUE)
# PDF values
x <- 2
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2
dnwbl(x, scale_l, scale_u, shape_l, shape_u)
# CDF values
q <- 1.5
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2.0
pnwbl(q, scale_l, scale_u, shape_l, shape_u)
# Quantile values
p <- 0.5
scale_l <- 1
scale_u <- 2.0
shape_l<-0.5
shape_u<-2
qnwbl(p, scale_l, scale_u, shape_l, shape_u)
# PDF PLOT
scale_l <- 1
scale_u <- 1
shape_l<-2
shape_u<-3
plot_npdfwbl(scale_l, scale_u, shape_l, shape_u, x = c(0, 5))
# CDF PLOT
scale_l <- 1
scale_u <- 1
shape_l<-2
shape_u<-3
plot_ncdfwbl(scale_l, scale_u, shape_l, shape_u, x = c(0, 5))