Type: | Package |
Title: | Neutrosophic Survey Data Analysis |
Version: | 0.1.0 |
Maintainer: | Pankaj Das <pankaj.iasri@gmail.com> |
Description: | Apply neutrosophic regression type estimator and performs neutrosophic interval analysis including metric calculations for survey data. |
License: | GPL-3 |
Encoding: | UTF-8 |
Depends: | R (≥ 3.5.0) |
Imports: | moments, stats |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-06-19 09:06:14 UTC; Pankaj |
Author: | Neha Purwar [aut],
Kaustav Aditya [aut],
Pankaj Das |
Repository: | CRAN |
Date/Publication: | 2025-06-23 11:00:02 UTC |
Calculate All MSE Neutrosophic
Description
Computes various Mean Squared Error (MSE) estimates for neutrosophic interval data using different adjustment methods.
Usage
calculate_all_mse_neutrosophic(
theta_L,
theta_U,
Y_L,
Y_U,
X_L,
X_U,
Cx_L,
Cx_U,
Cy_L,
Cy_U,
rho_L,
rho_U,
B_L,
B_U
)
Arguments
theta_L |
Lower theta value (1/n_L - 1/N_L) |
theta_U |
Upper theta value (1/n_U - 1/N_U) |
Y_L |
Lower study mean |
Y_U |
Upper study mean |
X_L |
Lower auxiliary mean |
X_U |
Upper auxiliary mean |
Cx_L |
Lower auxiliary CV |
Cx_U |
Upper auxiliary CV |
Cy_L |
Lower study CV |
Cy_U |
Upper study CV |
rho_L |
Lower correlation |
rho_U |
Upper correlation |
B_L |
Lower kurtosis |
B_U |
Upper kurtosis |
Value
A list containing five types of MSE estimates:
MSE - Standard MSE estimates (Lower, Upper)
MSE1 - Ratio-adjusted MSE estimates
MSE2 - Kurtosis-adjusted MSE estimates
MSE_exp - Exponential MSE estimates
MSE_r - Regression MSE estimates
Author(s)
Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti
Examples
# First compute metrics from data
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
# Define population parameters (non-interactive example)
inputs <- list(theta_L = 0.01, theta_U = 0.02)
# Calculate all MSE types
mse_results <- calculate_all_mse_neutrosophic(
inputs$theta_L, inputs$theta_U,
metrics$mean_interval_Y[1], metrics$mean_interval_Y[2],
metrics$mean_interval_X[1], metrics$mean_interval_X[2],
metrics$cv_interval_X[1], metrics$cv_interval_X[2],
metrics$cv_interval_Y[1], metrics$cv_interval_Y[2],
metrics$correlation_results[1], metrics$correlation_results[2],
metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2]
)
# Print results
print(mse_results)
Calculate Percentage Relative Efficiency (PRE)
Description
Computes the Percentage Relative Efficiency (PRE) of different MSE estimators relative to the regression estimator MSE. PRE values greater than 100 indicate better efficiency than the regression estimator, while values less than 100 indicate worse efficiency.
Usage
calculate_pre(result_all_mse)
Arguments
result_all_mse |
A list containing MSE results from |
Value
A list containing PRE values for each estimator type:
PRE_t0 - PRE for standard MSE estimator
PRE_t1 - PRE for ratio-adjusted MSE estimator
PRE_t2 - PRE for kurtosis-adjusted MSE estimator
PRE_exp - PRE for exponential MSE estimator
PRE_r - Reference value (100) for regression estimator
See Also
calculate_all_mse_neutrosophic
for generating the input MSE values
Examples
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
mse_results <- calculate_all_mse_neutrosophic(
0.01, 0.02,
metrics$mean_interval_Y[1], metrics$mean_interval_Y[2],
metrics$mean_interval_X[1], metrics$mean_interval_X[2],
metrics$cv_interval_X[1], metrics$cv_interval_X[2],
metrics$cv_interval_Y[1], metrics$cv_interval_Y[2],
metrics$correlation_results[1], metrics$correlation_results[2],
metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2]
)
pre_results <- calculate_pre(mse_results)
print(pre_results)
Compute Neutrosophic Interval Metrics
Description
Calculates various metrics for neutrosophic interval data including means, standard deviations, CVs, kurtosis, and correlations between interval-valued variables.
Usage
compute_all_metrics(data)
Arguments
data |
A data frame containing columns 'Auxili_min', 'Auxili_max', 'Study_min', and 'Study_max' |
Value
A list containing all calculated metrics with components:
mean_interval_X - Mean interval for auxiliary variable (min, max)
subtracted_intervals_X - Data frame of subtracted intervals for auxiliary
sd_interval_X - Standard deviations for auxiliary (min, max)
cv_interval_X - Coefficients of variation for auxiliary (min, max)
kurtosis_interval_X - Kurtosis values for auxiliary (min, max)
mean_interval_Y - Mean interval for study variable (min, max)
subtracted_intervals_Y - Data frame of subtracted intervals for study
sd_interval_Y - Standard deviations for study (min, max)
cv_interval_Y - Coefficients of variation for study (min, max)
correlation_results - Correlation between intervals (rho_L, rho_U)
Author(s)
Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti
Examples
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
# View mean intervals
cat("Auxiliary Mean Interval:", metrics$mean_interval_X, "\n")
cat("Study Mean Interval:", metrics$mean_interval_Y, "\n")
# View correlation results
cat("Correlation between intervals (rho_L, rho_U):",
metrics$correlation_results, "\n")
Format MSE Results for Neutrosophic Survey Data Analysis
Description
Formats the output of calculate_all_mse_neutrosophic
into a human-readable string
that clearly displays all five types of MSE estimates with their interval values.
Usage
format_mse_results(mse_results)
Arguments
mse_results |
A list containing MSE results from |
Details
The function takes the MSE results list and formats it to show:
Standard MSE estimates
Ratio-adjusted MSE estimates
Kurtosis-adjusted MSE estimates
Exponential MSE estimates
Regression MSE estimates
Value
A formatted character string ready for printing, showing all MSE types with their lower and upper bounds
See Also
calculate_all_mse_neutrosophic
for generating the input for this function
Examples
# First calculate MSE results
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro)
mse <- calculate_all_mse_neutrosophic(
0.01, 0.02,
metrics$mean_interval_Y[1], metrics$mean_interval_Y[2],
metrics$mean_interval_X[1], metrics$mean_interval_X[2],
metrics$cv_interval_X[1], metrics$cv_interval_X[2],
metrics$cv_interval_Y[1], metrics$cv_interval_Y[2],
metrics$correlation_results[1], metrics$correlation_results[2],
metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2]
)
# Format and print results
cat(format_mse_results(mse))
Get User Inputs for Population and Sample Sizes
Description
Interactively prompts user for population and sample sizes and calculates theta values (1/n - 1/N) used in MSE calculations.
Usage
get_user_inputs()
Value
A list containing:
theta_L - Lower theta value
theta_U - Upper theta value
Author(s)
Neha Purwar, Kaustav Aditya, Pankaj Das and Bharti
Examples
if(interactive()){
# Interactive example (run in console)
inputs <- get_user_inputs()
# The function will prompt:
# Enter value for population size_L: 1000
# Enter value for population size_U: 2000
# Enter value for sample_size_L: 100
# Enter value for sample_size_U: 200
}
Japan Neutrosophic Interval Dataset
Description
A dataset containing interval-valued measurements from Japan, suitable for neutrosophic statistical analysis. The data includes both auxiliary and study variables with their minimum and maximum bounds.
Usage
data(japan_neutro)
Format
A data frame with 31 observations and 4 variables:
- Auxili_min
Numeric vector representing the lower bounds of the auxiliary variable
- Auxili_max
Numeric vector representing the upper bounds of the auxiliary variable
- Country
Non-numeric vector representing country names
- Sex
Non-numeric vector representing sex of particapant i.e. male or female
- Study_min
Numeric vector representing the lower bounds of the study variable
- Study_max
Numeric vector representing the upper bounds of the study variable
- Year
Numeric vector representing year on which the data is collected
Examples
# Load the dataset
data(japan_neutro)
# View the first few rows
head(japan_neutro)
# Calculate basic metrics
metrics <- compute_all_metrics(japan_neutro)
print(metrics$mean_interval_X) # Mean of auxiliary variable
print(metrics$mean_interval_Y) # Mean of study variable