Type: | Package |
Title: | Model-Based Clustering of Network Data |
Version: | 1.0.1 |
Date: | 2020-06-09 |
Author: | Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut] |
Maintainer: | Shuchismita Sarkar <ssarkar@bgsu.edu> |
Description: | Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Imports: | Rcpp (≥ 1.0.2) |
LinkingTo: | Rcpp, RcppArmadillo |
RoxygenNote: | 7.1.1 |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2020-07-06 23:52:50 UTC; shuch |
Depends: | R (≥ 3.5.0) |
Repository: | CRAN |
Date/Publication: | 2020-07-07 09:30:02 UTC |
Model-Based Clustering of Network Data
Description
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'.
Details
The DESCRIPTION file:
Package: | netClust |
Type: | Package |
Title: | Model-Based Clustering of Network Data |
Version: | 1.0.1 |
Date: | 2020-06-09 |
Author: | Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut] |
Maintainer: | Shuchismita Sarkar <ssarkar@bgsu.edu> |
Description: | Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'. |
License: | GPL (>= 2) |
Imports: | Rcpp (>= 1.0.2) |
LinkingTo: | Rcpp, RcppArmadillo |
RoxygenNote: | 7.1.1 |
Encoding: | UTF-8 |
Index of help topics:
netClust-package Model-Based Clustering of Network Data netData Dataset: netData netDataID Dataset: netDataID netEM_multilayer Returns the EM object for multilayer network netEM_unilayer Returns the EM object for unilayer network
Clustering unilayer and multilayer network data by means of finite mixtures is the main utility of 'netClust'.
Author(s)
Shuchismita Sarkar [aut, cre], Volodymyr Melnykov [aut]
Maintainer: Shuchismita Sarkar <ssarkar@bgsu.edu>
References
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
Examples
data(netData) ## Read network data
data(netDataID) ## Read original ID for network data
n <- dim(netData)[1] ## number of nodes of the network
p <- dim(netData)[4] ## number of layers of the network
K <- 2 ## number of clusters
y <- netData
eps=0.0001
RndStrtUni= 3
RndStrtMult= 5
SmEMUni= 2
SmEMMult= 3
ItrSmEM=5
burn = 10*n
ItrMCMC= 50*n
sSigma = 1
sPsi = 1
a=0
##########################################
### Run unilayer network EM on layer 1 ###
##########################################
x <- array(0, dim = c(n,n,2))
for (i in 1:n){
for (j in 1:n){
x[i,j,] <- y[i,j,,1]
}
}
E <- netEM_unilayer(x, K, eps, RndStrtUni, SmEMUni, ItrSmEM, burn, ItrMCMC, sSigma,a)
cat("Unilayer network", "Original ID", netDataID, "\n")
cat("Unilayer network", "Assigned ID", E$id, "\n")
##################################
### Run multilayer network EM ###
##################################
E <- netEM_multilayer(y,K,p, eps, RndStrtMult, SmEMMult, ItrSmEM, burn, ItrMCMC, sSigma, sPsi, n, a)
cat("Multilayer network", "Original ID", netDataID, "\n")
cat("Multilayer network", "Assigned ID", E$id, "\n")
Dataset: netData
Description
Network data with 10 nodes and 2 layers
Usage
data("netData")
Format
The format is: num [1:10, 1:10, 1:2, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
Details
Dataset demonstrating multilayer network
Source
Sarkar, S. (2020)
References
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
Examples
data(netData)
## maybe str(netData) ; plot(netData) ...
Dataset: netDataID
Description
ID for netData dataset
Usage
data("netDataID")
Format
A data frame with 10 observations on the following 1 variable.
netDataID
a numeric vector
Details
ID for the dataset demonstrating multilayer network
Source
Sarkar, S. (2020)
References
Sarkar, S. (2019) On the use of transformations for modeling multidimensional heterogeneous data, The University of Alabama Libraries Digital Collections
Examples
data(netDataID)
## maybe str(netDataID) ; plot(netDataID) ...
Returns the EM object for multilayer network
Description
Returns the EM object for multilayer network
Usage
netEM_multilayer(
y,
K,
p,
eps,
num_rand_start,
num_run_smallEM,
max_itr_smallEM,
burn,
MCMC_itr,
sigma_mult,
psi_mult,
n,
alpha
)
Arguments
y |
multiple network |
K |
number of clusters |
p |
number of layers |
eps |
epsilon for convergence |
num_rand_start |
number of random starts |
num_run_smallEM |
number of runs for small EM |
max_itr_smallEM |
maximum number of runs for small EM |
burn |
number of runs for burn for Metropolis Hastings |
MCMC_itr |
number of runs for Metropolis Hastings iterations |
sigma_mult |
scaling multiplier for Sigma matrix |
psi_mult |
scaling multiplier for Psi matrix |
n |
number of nodes of the network |
alpha |
seed provided by the user |
Value
EM object
Returns the EM object for unilayer network
Description
Returns the EM object for unilayer network
Usage
netEM_unilayer(
x,
K,
eps,
num_rand_start,
num_run_smallEM,
max_itr_smallEM,
burn,
MCMC_itr,
sigma_mult,
alpha
)
Arguments
x |
multiple network |
K |
number of clusters |
eps |
epsilon for convergence |
num_rand_start |
number of random starts |
num_run_smallEM |
number of runs for small EM |
max_itr_smallEM |
maximum number of runs for small EM |
burn |
number of runs for burn for Metropolis Hastings |
MCMC_itr |
number of runs for Metropolis Hastings iterations |
sigma_mult |
scaling multiplier for Sigma matrix |
alpha |
seed provided by the user |
Value
EM object