
Package ‘kernelshap’
July 25, 2025

Title Kernel SHAP

Version 0.9.0

Description Efficient implementation of Kernel SHAP (Lundberg and Lee,
2017, <doi:10.48550/arXiv.1705.07874>) permutation SHAP, and additive
SHAP for model interpretability. For Kernel SHAP and permutation
SHAP, if the number of features is too large for exact calculations,
the algorithms iterate until the SHAP values are sufficiently precise
in terms of their standard errors. The package integrates smoothly
with meta-learning packages such as 'tidymodels', 'caret' or 'mlr3'.
It supports multi-output models, case weights, and parallel
computations. Visualizations can be done using the R package
'shapviz'.

License GPL (>= 2)

Depends R (>= 3.2.0)

Encoding UTF-8

RoxygenNote 7.3.2

Imports doFuture, foreach, stats, utils

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/ModelOriented/kernelshap

BugReports https://github.com/ModelOriented/kernelshap/issues

NeedsCompilation no

Author Michael Mayer [aut, cre] (ORCID:
<https://orcid.org/0009-0007-2540-9629>),

David Watson [aut] (ORCID: <https://orcid.org/0000-0001-9632-2159>),
Przemyslaw Biecek [ctb] (ORCID:

<https://orcid.org/0000-0001-8423-1823>)

Maintainer Michael Mayer <mayermichael79@gmail.com>

Repository CRAN

Date/Publication 2025-07-25 12:50:02 UTC

1

https://doi.org/10.48550/arXiv.1705.07874
https://github.com/ModelOriented/kernelshap
https://github.com/ModelOriented/kernelshap/issues
https://orcid.org/0009-0007-2540-9629
https://orcid.org/0000-0001-9632-2159
https://orcid.org/0000-0001-8423-1823

2 additive_shap

Contents
additive_shap . 2
is.kernelshap . 3
kernelshap . 4
permshap . 9
print.kernelshap . 13
summary.kernelshap . 13

Index 15

additive_shap Additive SHAP

Description

Exact additive SHAP assuming feature independence. The implementation works for models fitted
via

• lm(),

• glm(),

• mgcv::gam(),

• mgcv::bam(),

• gam::gam(),

• survival::coxph(), and

• survival::survreg().

Usage

additive_shap(object, X, verbose = TRUE, ...)

Arguments

object Fitted additive model.

X Dataframe with rows to be explained. Passed to predict(object, newdata =
X, type = "terms").

verbose Set to FALSE to suppress messages.

... Currently unused.

Details

The SHAP values are extracted via predict(object, newdata = X, type = "terms"), a logic adopted
from fastshap:::explain.lm(..., exact = TRUE). Models with interactions (specified via : or
*), or with terms of multiple features like log(x1/x2) are not supported.

Note that the SHAP values obtained by additive_shap() are expected to match those of permshap()
and kernelshap() as long as their background data equals the full training data (which is typically
not feasible).

is.kernelshap 3

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values.

• X: Same as input argument X.

• baseline: The baseline.

• exact: TRUE.

• txt: Summary text.

• predictions: Vector with predictions of X on the scale of "terms".

• algorithm: "additive_shap".

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)
s <- additive_shap(fit, head(iris))
s

MODEL TWO: More complicated (but not very clever) formula
fit <- lm(

Sepal.Length ~ poly(Sepal.Width, 2) + log(Petal.Length) + log(Sepal.Width),
data = iris

)
s_add <- additive_shap(fit, head(iris))
s_add

Equals kernelshap()/permshap() when background data is full training data
s_kernel <- kernelshap(
fit, head(iris[c("Sepal.Width", "Petal.Length")]), bg_X = iris

)
all.equal(s_addS, s_kernelS)

is.kernelshap Check for kernelshap

Description

Is object of class "kernelshap"?

Usage

is.kernelshap(object)

Arguments

object An R object.

4 kernelshap

Value

TRUE if object is of class "kernelshap", and FALSE otherwise.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:2, -1], bg_X = iris[, -1])
is.kernelshap(s)
is.kernelshap("a")

kernelshap Kernel SHAP

Description

Efficient implementation of Kernel SHAP, see Lundberg and Lee (2017), and Covert and Lee
(2021), abbreviated by CL21. By default, for up to p=8 features, exact SHAP values are returned
(with respect to the selected background data). Otherwise, a partly exact hybrid algorithm combin-
ing exact calculations and iterative paired sampling is used, see Details.

Usage

kernelshap(object, ...)

Default S3 method:
kernelshap(

object,
X,
bg_X = NULL,
pred_fun = stats::predict,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
hybrid_degree = 1L + length(feature_names) %in% 4:16,
m = 2L * length(feature_names) * (1L + 3L * (hybrid_degree == 0L)),
tol = 0.005,
max_iter = 100L,
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
seed = NULL,
...

kernelshap 5

)

S3 method for class 'ranger'
kernelshap(
object,
X,
bg_X = NULL,
pred_fun = NULL,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
hybrid_degree = 1L + length(feature_names) %in% 4:16,
m = 2L * length(feature_names) * (1L + 3L * (hybrid_degree == 0L)),
tol = 0.005,
max_iter = 100L,
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
seed = NULL,
survival = c("chf", "prob"),
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...).

X (n × p) matrix or data.frame with rows to be explained. The columns should
only represent model features, not the response (but see feature_names on how
to overrule this).

bg_X Background data used to integrate out "switched off" features, often a subset of
the training data (typically 50 to 500 rows). In cases with a natural "off" value
(like MNIST digits), this can also be a single row with all values set to the off
value. If no bg_X is passed (the default) and if X is sufficiently large, a random
sample of bg_n rows from X serves as background data.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its second
argument a data structure like X. Additional (named) arguments are passed via
.... The default, stats::predict(), will work in most cases.

feature_names Optional vector of column names in X used to calculate SHAP values. By de-
fault, this equals colnames(X).

bg_w Optional vector of case weights for each row of bg_X. If bg_X = NULL, must be
of same length as X. Set to NULL for no weights.

bg_n If bg_X = NULL: Size of background data to be sampled from X.

exact If TRUE, the algorithm will produce exact SHAP values with respect to the back-
ground data. The default is TRUE for up to eight features, and FALSE otherwise.

6 kernelshap

hybrid_degree Integer controlling the exactness of the hybrid strategy. For 4 ≤ p ≤ 16, the
default is 2, otherwise it is 1. Ignored if exact = TRUE.

• 0: Pure sampling strategy not involving any exact part. It is strictly worse
than the hybrid strategy and should therefore only be used for studying
properties of the Kernel SHAP algorithm.

• 1: Uses all 2p on-off vectors z with
∑

z ∈ {1, p − 1} for the exact part.
The remaining mass is covered by random sampling.

• 2: Uses all p(p+ 1) on-off vectors z with
∑

z ∈ {1, 2, p− 2, p− 1}. The
remaining mass is covered by sampling. Usually converges fast.

• k>2: Uses all on-off vectors with
∑

z ∈ {1, . . . , k, p− k, . . . , p− 1}.

m Even number of on-off vectors sampled during one iteration. The default is 2p,
except when hybrid_degree == 0. Then it is set to 8p. Ignored if exact = TRUE.

tol Tolerance determining when to stop. As in CL21, the algorithm keeps iterating
until max(σn)/(max(βn) − min(βn)) < tol, where the βn are the SHAP val-
ues of a given observation, and σn their standard errors. For multidimensional
predictions, the criterion must be satisfied for each dimension separately. The
stopping criterion uses the fact that standard errors and SHAP values are all on
the same scale. Ignored if exact = TRUE. For permshap(), the default is 0.01,
while for kernelshap() it is set to 0.005.

max_iter If the stopping criterion (see tol) is not reached after max_iter iterations, the
algorithm stops. Ignored if exact = TRUE.

parallel If TRUE, use foreach::foreach() and %dofuture% to loop over rows to be
explained. Must register backend beforehand, e.g., plan(multisession), see
README for an example. Currently disables the progress bar.

parallel_args Named list of arguments passed to foreach::foreach(.options.future =
...), ideally NULL (default). Only relevant if parallel = TRUE. Example on
Windows: if object is a GAM fitted with package ’mgcv’, then one might need
to set parallel_args = list(packages = "mgcv"). Similarly, if the model has
been fitted with ranger(), then it might be necessary to pass parallel_args =
list(packages = "ranger").

verbose Set to FALSE to suppress messages and the progress bar.

seed Optional integer random seed. Note that it changes the global seed.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

Details

The pure iterative Kernel SHAP sampling as in Covert and Lee (2021) works like this:

1. A binary "on-off" vector z is drawn from {0, 1}p according to a special weighting logic.

2. For each j with zj = 1, the j-th column of the original background data is replaced by the
corresponding feature value xj of the observation to be explained.

3. The average prediction vz on the data of Step 2 is calculated, and the average prediction v0 on
the background data is subtracted.

kernelshap 7

4. Steps 1 to 3 are repeated m times. This produces a binary m × p matrix Z (each row equals
one of the z) and a vector v of shifted predictions.

5. v is regressed onto Z under the constraint that the sum of the coefficients equals v1 − v0,
where v1 is the prediction of the observation to be explained. The resulting coefficients are
the Kernel SHAP values.

This is repeated multiple times until convergence, see CL21 for details.

To avoid the re-evaluation of identical coalition vectors, we have implemented a hybrid strategy,
combining exact calculations with sampling.

The hybrid algorithm has two steps:

1. Step 1 (exact part): There are 2p different on-off vectors z with
∑

z ∈ {1, p − 1}. The
degree 1 hybrid will list those vectors and use them according to their weights in the upcoming
calculations. Depending on p, we can also go a step further to a degree 2 hybrid by adding
all p(p − 1) vectors with

∑
z ∈ {2, p − 2} to the process etc. The necessary predictions are

obtained along with other calculations similar to those described in CL21.

2. Step 2 (sampling part): The remaining weight is filled by sampling vectors z according to
Kernel SHAP weights normalized to the values not yet covered by Step 1. Together with the
results from Step 1 - correctly weighted - this now forms a complete iteration as in CL21. The
difference is that a significant part of the mass is covered by exact calculations. Afterwards,
the algorithm iterates until convergence. The output of Step 1 is reused in every iteration.

If p is sufficiently small, all possible 2p − 2 on-off vectors z can be evaluated. In this case, no
sampling is required and the algorithm returns exact Kernel SHAP values with respect to the given
background data. Since kernelshap() calculates predictions on data with MN rows (N is the
background data size and M the number of z vectors), p should not be higher than 10 for exact
calculations. For similar reasons, degree 2 hybrids should not use p larger than 40.

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values or, if the model output has dimension K > 1, a list of K
such matrices.

• X: Same as input argument X.

• baseline: Vector of length K representing the average prediction on the background data.

• bg_X: The background data.

• bg_w: The background case weights.

• m_exact: Number of on-off vectors evaluated for exact calculations.

• prop_exact: Proportion of the Kernel SHAP weight distribution covered by exact calcula-
tions.

• exact: Logical flag indicating whether calculations are exact or not.

• txt: Summary text.

• predictions: (n×K) matrix with predictions of X.

• algorithm: "kernelshap".

8 kernelshap

• m: Number of sampled on-off vectors evaluated per iteration (if not exact).

• SE: Standard errors corresponding to S (if not exact).

• n_iter: Integer vector of length n providing the number of iterations per row of X (if not
exact).

• converged: Logical vector of length n indicating convergence per row of X (if not exact).

Methods (by class)

• kernelshap(default): Default Kernel SHAP method.

• kernelshap(ranger): Kernel SHAP method for "ranger" models, see Readme for an exam-
ple.

References

1. Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Proceedings of the 31st International Conference on Neural Information Processing Systems,
2017.

2. Ian Covert and Su-In Lee. Improving KernelSHAP: Practical Shapley Value Estimation Us-
ing Linear Regression. Proceedings of The 24th International Conference on Artificial Intel-
ligence and Statistics, PMLR 130:3457-3465, 2021.

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)

Select rows to explain (only feature columns)
X_explain <- iris[-1]

Calculate SHAP values
s <- kernelshap(fit, X_explain)
s

MODEL TWO: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- kernelshap(fit, iris[3:5])
s

Note 1: Feature columns can also be selected 'feature_names'
Note 2: Especially when X is small, pass a sufficiently large background data bg_X
s <- kernelshap(

fit,
iris[1:4,],
bg_X = iris,
feature_names = c("Petal.Length", "Petal.Width", "Species")

)
s

permshap 9

permshap Permutation SHAP

Description

Permutation SHAP algorithm with respect to a background dataset, see Strumbelj and Kononenko
(2014) for the basic idea.

By default, for up to p=8 features, exact SHAP values are returned (exact with respect to the selected
background data). Otherwise, the sampling process iterates until the resulting values are sufficiently
precise, and standard errors are provided.

Usage

permshap(object, ...)

Default S3 method:
permshap(

object,
X,
bg_X = NULL,
pred_fun = stats::predict,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
low_memory = length(feature_names) > 15L,
tol = 0.01,
max_iter = 10L * length(feature_names),
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
seed = NULL,
...

)

S3 method for class 'ranger'
permshap(
object,
X,
bg_X = NULL,
pred_fun = NULL,
feature_names = colnames(X),
bg_w = NULL,
bg_n = 200L,
exact = length(feature_names) <= 8L,
low_memory = length(feature_names) > 15L,

10 permshap

tol = 0.01,
max_iter = 10L * length(feature_names),
parallel = FALSE,
parallel_args = NULL,
verbose = TRUE,
seed = NULL,
survival = c("chf", "prob"),
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...).

X (n × p) matrix or data.frame with rows to be explained. The columns should
only represent model features, not the response (but see feature_names on how
to overrule this).

bg_X Background data used to integrate out "switched off" features, often a subset of
the training data (typically 50 to 500 rows). In cases with a natural "off" value
(like MNIST digits), this can also be a single row with all values set to the off
value. If no bg_X is passed (the default) and if X is sufficiently large, a random
sample of bg_n rows from X serves as background data.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its second
argument a data structure like X. Additional (named) arguments are passed via
.... The default, stats::predict(), will work in most cases.

feature_names Optional vector of column names in X used to calculate SHAP values. By de-
fault, this equals colnames(X).

bg_w Optional vector of case weights for each row of bg_X. If bg_X = NULL, must be
of same length as X. Set to NULL for no weights.

bg_n If bg_X = NULL: Size of background data to be sampled from X.

exact If TRUE, the algorithm will produce exact SHAP values with respect to the back-
ground data. The default is TRUE for up to eight features, and FALSE otherwise.

low_memory If FALSE (default up to p = 15), the algorithm does p iterations in one chunk,
evaluating Shapley’s formula 2p^2 times. For models with interactions up to
order two, you can set this to TRUE to save time.

tol Tolerance determining when to stop. As in CL21, the algorithm keeps iterating
until max(σn)/(max(βn) − min(βn)) < tol, where the βn are the SHAP val-
ues of a given observation, and σn their standard errors. For multidimensional
predictions, the criterion must be satisfied for each dimension separately. The
stopping criterion uses the fact that standard errors and SHAP values are all on
the same scale. Ignored if exact = TRUE. For permshap(), the default is 0.01,
while for kernelshap() it is set to 0.005.

max_iter If the stopping criterion (see tol) is not reached after max_iter iterations, the
algorithm stops. Ignored if exact = TRUE.

permshap 11

parallel If TRUE, use foreach::foreach() and %dofuture% to loop over rows to be
explained. Must register backend beforehand, e.g., plan(multisession), see
README for an example. Currently disables the progress bar.

parallel_args Named list of arguments passed to foreach::foreach(.options.future =
...), ideally NULL (default). Only relevant if parallel = TRUE. Example on
Windows: if object is a GAM fitted with package ’mgcv’, then one might need
to set parallel_args = list(packages = "mgcv"). Similarly, if the model has
been fitted with ranger(), then it might be necessary to pass parallel_args =
list(packages = "ranger").

verbose Set to FALSE to suppress messages and the progress bar.

seed Optional integer random seed. Note that it changes the global seed.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

Details

During each iteration, the algorithm cycles twice through a random permutation: It starts with
all feature components "turned on" (i.e., taking them from the observation to be explained), then
gradually turning off components according to the permutation. When all components are turned
off, the algorithm - one by one - turns the components back on, until all components are turned on
again. This antithetic scheme allows to evaluate Shapley’s formula twice per feature using a single
permutation and a total of 2p disjoint evaluations of the contribution function.

For models with interactions up to order two, one can show that even a single iteration provides
exact SHAP values for all features (with respect to the given background dataset).

The Python implementation "shap" uses a similar approach, but without providing standard errors,
and without early stopping.

For faster convergence, we use balanced permutations in the sense that p subsequent permutations
each start with a different feature. Furthermore, the 2p on-off vectors with sum <=1 or >=p-1 are
evaluated only once, similar to the degree 1 hybrid in kernelshap().

Value

An object of class "kernelshap" with the following components:

• S: (n× p) matrix with SHAP values or, if the model output has dimension K > 1, a list of K
such matrices.

• X: Same as input argument X.

• baseline: Vector of length K representing the average prediction on the background data.

• bg_X: The background data.

• bg_w: The background case weights.

• m_exact: Number of on-off vectors evaluated once per row of X.

• exact: Logical flag indicating whether calculations are exact or not.

• txt: Summary text.

• predictions: (n×K) matrix with predictions of X.

12 permshap

• algorithm: "permshap".

• m: Number of sampled on-off vectors evaluated per iteration (if not exact).

• SE: Standard errors corresponding to S (if not exact).

• n_iter: Integer vector of length n providing the number of iterations per row of X (if not
exact).

• converged: Logical vector of length n indicating convergence per row of X (if not exact).

Methods (by class)

• permshap(default): Default permutation SHAP method.

• permshap(ranger): Permutation SHAP method for "ranger" models, see Readme for an ex-
ample.

References

1. Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and Information Systems 41, 2014.

Examples

MODEL ONE: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)

Select rows to explain (only feature columns)
X_explain <- iris[-1]

Calculate SHAP values
s <- permshap(fit, X_explain)
s

MODEL TWO: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- permshap(fit, iris[3:5])
s

Note 1: Feature columns can also be selected 'feature_names'
Note 2: Especially when X is small, pass a sufficiently large background data bg_X
s <- permshap(

fit,
iris[1:4,],
bg_X = iris,
feature_names = c("Petal.Length", "Petal.Width", "Species")

)
s

print.kernelshap 13

print.kernelshap Prints "kernelshap" Object

Description

Prints "kernelshap" Object

Usage

S3 method for class 'kernelshap'
print(x, n = 2L, ...)

Arguments

x An object of class "kernelshap".

n Maximum number of rows of SHAP values to print.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:3, -1], bg_X = iris[, -1])
s

summary.kernelshap Summarizes "kernelshap" Object

Description

Summarizes "kernelshap" Object

Usage

S3 method for class 'kernelshap'
summary(object, compact = FALSE, n = 2L, ...)

14 summary.kernelshap

Arguments

object An object of class "kernelshap".

compact Set to TRUE for a more compact summary.

n Maximum number of rows of SHAP values etc. to print.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

kernelshap()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
s <- kernelshap(fit, iris[1:3, -1], bg_X = iris[, -1])
summary(s)

Index

additive_shap, 2
additive_shap(), 2

foreach::foreach(), 6, 11

glm(), 2

is.kernelshap, 3

kernelshap, 4
kernelshap(), 2, 4, 7, 11, 13, 14

lm(), 2

mgcv::bam(), 2
mgcv::gam(), 2

permshap, 9
permshap(), 2
print.kernelshap, 13

stats::predict(), 5, 10
summary.kernelshap, 13
survival::coxph(), 2
survival::survreg(), 2

15

	additive_shap
	is.kernelshap
	kernelshap
	permshap
	print.kernelshap
	summary.kernelshap
	Index

