Title: | Nonlinear Regression using Horseshoe Prior |
Version: | 0.0.6 |
Description: | Provides the posterior estimates of the regression coefficients when horseshoe prior is specified. The regression models considered here are logistic model for binary response and log normal accelerated failure time model for right censored survival response. The linear model analysis is also available for completeness. All models provide deviance information criterion and widely applicable information criterion. See <doi:10.1111/rssc.12377> Maity et. al. (2019) <doi:10.1111/biom.13132> Maity et. al. (2020). |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Depends: | R (≥ 3.5.0) |
Imports: | survival, msm |
RoxygenNote: | 7.1.1 |
Suggests: | boot, pgdraw, mvtnorm |
NeedsCompilation: | no |
Packaged: | 2020-12-16 21:35:11 UTC; MAITYA02 |
Author: | Arnab Kumar Maity [aut, cre] |
Maintainer: | Arnab Kumar Maity <Arnab.Maity@pfizer.com> |
Repository: | CRAN |
Date/Publication: | 2020-12-18 10:10:02 UTC |
Horseshoe shrinkage prior in Bayesian survival regression
Description
This function employs the algorithm provided by van der Pas et. al. (2016) for log normal Accelerated Failure Rate (AFT) model to fit survival regression. The censored observations are updated according to the data augmentation approach described in Maity et. al. (2019) and Maity et. al. (2020).
Usage
afths(
ct,
X,
method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
tau = 1,
method.sigma = c("fixed", "Jeffreys"),
Sigma2 = 1,
burn = 1000,
nmc = 5000,
thin = 1,
alpha = 0.05,
Xtest = NULL
)
Arguments
ct |
survival response, a |
X |
Matrix of covariates, dimension |
method.tau |
Method for handling |
tau |
Use this argument to pass the (estimated) value of |
method.sigma |
Select "Jeffreys" for full Bayes with Jeffrey's prior on the error
variance |
Sigma2 |
A fixed value for the error variance |
burn |
Number of burn-in MCMC samples. Default is 1000. |
nmc |
Number of posterior draws to be saved. Default is 5000. |
thin |
Thinning parameter of the chain. Default is 1 (no thinning). |
alpha |
Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals. |
Xtest |
test design matrix. |
Details
The model is:
t_i
is response,
c_i
is censored time,
t_i^* = \min_(t_i, c_i)
is observed time,
w_i
is censored data, so w_i = \log t_i^*
if t_i
is event time and
w_i = \log t_i^*
if t_i
is right censored
\log t_i=X\beta+\epsilon, \epsilon \sim N(0,\sigma^2)
.
Value
SurvivalHat |
Predictive survival probability |
LogTimeHat |
Predictive log time |
BetaHat |
Posterior mean of Beta, a |
LeftCI |
The left bounds of the credible intervals |
RightCI |
The right bounds of the credible intervals |
BetaMedian |
Posterior median of Beta, a |
LambdaHat |
Posterior samples of |
Sigma2Hat |
Posterior mean of error variance |
TauHat |
Posterior mean of global scale parameter tau, a positive scalar |
BetaSamples |
Posterior samples of |
TauSamples |
Posterior samples of |
Sigma2Samples |
Posterior samples of Sigma2 |
LikelihoodSamples |
Posterior samples of likelihood |
DIC |
Devainace Information Criterion of the fitted model |
WAIC |
Widely Applicable Information Criterion |
References
Maity, A. K., Carroll, R. J., and Mallick, B. K. (2019) "Integration of Survival and Binary Data for Variable Selection and Prediction: A Bayesian Approach", Journal of the Royal Statistical Society: Series C (Applied Statistics).
Maity, A. K., Bhattacharya, A., Mallick, B. K., & Baladandayuthapani, V. (2020). Bayesian data integration and variable selection for pan cancer survival prediction using protein expression data. Biometrics, 76(1), 316-325.
Stephanie van der Pas, James Scott, Antik Chakraborty and Anirban Bhattacharya (2016). horseshoe: Implementation of the Horseshoe Prior. R package version 0.1.0. https://CRAN.R-project.org/package=horseshoe
Enes Makalic and Daniel Schmidt (2016). High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649
Examples
burnin <- 500
nmc <- 1000
thin <- 1
y.sd <- 1 # standard deviation of the response
p <- 100 # number of predictors
ntrain <- 100 # training size
ntest <- 50 # test size
n <- ntest + ntrain # sample size
q <- 10 # number of true predictos
beta.t <- c(sample(x = c(1, -1), size = q, replace = TRUE), rep(0, p - q))
x <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = diag(p))
tmean <- x %*% beta.t
y <- rnorm(n, mean = tmean, sd = y.sd)
X <- scale(as.matrix(x)) # standarization
T <- exp(y) # AFT model
C <- rgamma(n, shape = 1.75, scale = 3) # 42% censoring time
time <- pmin(T, C) # observed time is min of censored and true
status = time == T # set to 1 if event is observed
ct <- as.matrix(cbind(time = time, status = status)) # censored time
# Training set
cttrain <- ct[1:ntrain, ]
Xtrain <- X[1:ntrain, ]
# Test set
cttest <- ct[(ntrain + 1):n, ]
Xtest <- X[(ntrain + 1):n, ]
posterior.fit <- afths(ct = cttrain, X = Xtrain, method.tau = "halfCauchy",
method.sigma = "Jeffreys", burn = burnin, nmc = nmc, thin = 1,
Xtest = Xtest)
posterior.fit$BetaHat
# Posterior processing to recover the true predictors
cluster <- kmeans(abs(posterior.fit$BetaHat), centers = 2)$cluster
cluster1 <- which(cluster == 1)
cluster2 <- which(cluster == 2)
min.cluster <- ifelse(length(cluster1) < length(cluster2), 1, 2)
which(cluster == min.cluster) # this matches with the true variables
Horseshoe shrinkage prior in Bayesian linear regression
Description
This function employs the algorithm provided by van der Pas et. al. (2016) for linear model to fit Bayesian regression.
Usage
lmhs(
y,
X,
method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
tau = 1,
method.sigma = c("fixed", "Jeffreys"),
Sigma2 = 1,
burn = 1000,
nmc = 5000,
thin = 1,
alpha = 0.05,
Xtest = NULL
)
Arguments
y |
Response vector. |
X |
Matrix of covariates, dimension |
method.tau |
Method for handling |
tau |
Use this argument to pass the (estimated) value of |
method.sigma |
Select "Jeffreys" for full Bayes with Jeffrey's prior on the error
variance |
Sigma2 |
A fixed value for the error variance |
burn |
Number of burn-in MCMC samples. Default is 1000. |
nmc |
Number of posterior draws to be saved. Default is 5000. |
thin |
Thinning parameter of the chain. Default is 1 (no thinning). |
alpha |
Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals. |
Xtest |
test design matrix. |
Details
The model is:
y_i
is response,
y_i=X\beta+\epsilon, \epsilon \sim N(0,\sigma^2)
.
Value
yHat |
Predictive response |
BetaHat |
Posterior mean of Beta, a |
LeftCI |
The left bounds of the credible intervals |
RightCI |
The right bounds of the credible intervals |
BetaMedian |
Posterior median of Beta, a |
LambdaHat |
Posterior samples of |
Sigma2Hat |
Posterior mean of error variance |
TauHat |
Posterior mean of global scale parameter tau, a positive scalar |
BetaSamples |
Posterior samples of |
TauSamples |
Posterior samples of |
Sigma2Samples |
Posterior samples of Sigma2 |
LikelihoodSamples |
Posterior samples of likelihood |
DIC |
Devainace Information Criterion of the fitted model |
WAIC |
Widely Applicable Information Criterion |
References
Maity, A. K., Carroll, R. J., and Mallick, B. K. (2019) "Integration of Survival and Binary Data for Variable Selection and Prediction: A Bayesian Approach", Journal of the Royal Statistical Society: Series C (Applied Statistics).
Maity, A. K., Bhattacharya, A., Mallick, B. K., & Baladandayuthapani, V. (2020). Bayesian data integration and variable selection for pan cancer survival prediction using protein expression data. Biometrics, 76(1), 316-325.
Stephanie van der Pas, James Scott, Antik Chakraborty and Anirban Bhattacharya (2016). horseshoe: Implementation of the Horseshoe Prior. R package version 0.1.0. https://CRAN.R-project.org/package=horseshoe
Enes Makalic and Daniel Schmidt (2016). High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649
Examples
burnin <- 500
nmc <- 1000
thin <- 1
y.sd <- 1 # standard deviation of the response
p <- 100 # number of predictors
ntrain <- 100 # training size
ntest <- 50 # test size
n <- ntest + ntrain # sample size
q <- 10 # number of true predictos
beta.t <- c(sample(x = c(1, -1), size = q, replace = TRUE), rep(0, p - q))
x <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = diag(p))
tmean <- x %*% beta.t
y <- rnorm(n, mean = tmean, sd = y.sd)
X <- scale(as.matrix(x)) # standarization
# Training set
ytrain <- y[1:ntrain]
Xtrain <- X[1:ntrain, ]
# Test set
ytest <- y[(ntrain + 1):n]
Xtest <- X[(ntrain + 1):n, ]
posterior.fit <- lmhs(y = ytrain, X = Xtrain, method.tau = "halfCauchy",
method.sigma = "Jeffreys", burn = burnin, nmc = nmc, thin = 1,
Xtest = Xtest)
posterior.fit$BetaHat
# Posterior processing to recover the true predictors
cluster <- kmeans(abs(posterior.fit$BetaHat), centers = 2)$cluster
cluster1 <- which(cluster == 1)
cluster2 <- which(cluster == 2)
min.cluster <- ifelse(length(cluster1) < length(cluster2), 1, 2)
which(cluster == min.cluster) # this matches with the true variables
Horseshoe shrinkage prior in Bayesian Logistic regression
Description
This function employs the algorithm provided by Makalic and Schmidt (2016) for binary logistic model to fit Bayesian logistic regression. The observations are updated according to the Polya-Gamma data augmentation of approach of Polson, Scott, and Windle (2014).
Usage
logiths(
z,
X,
method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
tau = 1,
burn = 1000,
nmc = 5000,
thin = 1,
alpha = 0.05,
Xtest = NULL
)
Arguments
z |
Response, a |
X |
Matrix of covariates, dimension |
method.tau |
Method for handling |
tau |
Use this argument to pass the (estimated) value of |
burn |
Number of burn-in MCMC samples. Default is 1000. |
nmc |
Number of posterior draws to be saved. Default is 5000. |
thin |
Thinning parameter of the chain. Default is 1 (no thinning). |
alpha |
Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals. |
Xtest |
test design matrix. |
Details
The model is:
z_i
is response either 1 or 0,
\log \Pr(z_i = 1) = logit^{-1}(X\beta)
.
Value
ProbHat |
Predictive probability |
BetaHat |
Posterior mean of Beta, a |
LeftCI |
The left bounds of the credible intervals |
RightCI |
The right bounds of the credible intervals |
BetaMedian |
Posterior median of Beta, a |
LambdaHat |
Posterior samples of |
TauHat |
Posterior mean of global scale parameter tau, a positive scalar |
BetaSamples |
Posterior samples of |
TauSamples |
Posterior samples of |
LikelihoodSamples |
Posterior samples of likelihood |
DIC |
Devainace Information Criterion of the fitted model |
WAIC |
Widely Applicable Information Criterion |
References
Stephanie van der Pas, James Scott, Antik Chakraborty and Anirban Bhattacharya (2016). horseshoe: Implementation of the Horseshoe Prior. R package version 0.1.0. https://CRAN.R-project.org/package=horseshoe
Enes Makalic and Daniel Schmidt (2016). High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649
Polson, N.G., Scott, J.G. and Windle, J. (2014) The Bayesian Bridge. Journal of Royal Statistical Society, B, 76(4), 713-733.
Examples
burnin <- 100
nmc <- 500
thin <- 1
p <- 100 # number of predictors
ntrain <- 250 # training size
ntest <- 100 # test size
n <- ntest + ntrain # sample size
q <- 10 # number of true predictos
beta.t <- c(sample(x = c(1, -1), size = q, replace = TRUE), rep(0, p - q))
x <- mvtnorm::rmvnorm(n, mean = rep(0, p), sigma = diag(p))
zmean <- x %*% beta.t
z <- rbinom(n, size = 1, prob = boot::inv.logit(zmean))
X <- scale(as.matrix(x)) # standarization
# Training set
ztrain <- z[1:ntrain]
Xtrain <- X[1:ntrain, ]
# Test set
ztest <- z[(ntrain + 1):n]
Xtest <- X[(ntrain + 1):n, ]
posterior.fit <- logiths(z = ztrain, X = Xtrain, method.tau = "halfCauchy",
burn = burnin, nmc = nmc, thin = 1,
Xtest = Xtest)
posterior.fit$BetaHat
# Posterior processing to recover the true predictors
cluster <- kmeans(abs(posterior.fit$BetaHat), centers = 2)$cluster
cluster1 <- which(cluster == 1)
cluster2 <- which(cluster == 2)
min.cluster <- ifelse(length(cluster1) < length(cluster2), 1, 2)
which(cluster == min.cluster) # this matches with the true variables
Horseshoe shrinkage prior in Bayesian Probit regression
Description
This function employs the algorithm provided by Makalic and Schmidt (2016) for binary probit model to fit Bayesian probit regression. The observations are updated according to the data augmentation of approach of Albert and Chib (1993).
The model is:
z_i
is response either 1 or 0,
\log \Pr(z_i = 1) = \Phi(X\beta), \Phi \sim N(0,\sigma^2)
.
Usage
probiths(
z,
X,
method.tau = c("fixed", "truncatedCauchy", "halfCauchy"),
tau = 1,
burn = 1000,
nmc = 5000,
thin = 1,
alpha = 0.05,
Xtest = NULL
)
Arguments
z |
Response, a |
X |
Matrix of covariates, dimension |
method.tau |
Method for handling |
tau |
Use this argument to pass the (estimated) value of |
burn |
Number of burn-in MCMC samples. Default is 1000. |
nmc |
Number of posterior draws to be saved. Default is 5000. |
thin |
Thinning parameter of the chain. Default is 1 (no thinning). |
alpha |
Level for the credible intervals. For example, alpha = 0.05 results in 95% credible intervals. |
Xtest |
test design matrix. |
Value
ProbHat |
Predictive probability |
BetaHat |
Posterior mean of Beta, a |
LeftCI |
The left bounds of the credible intervals |
RightCI |
The right bounds of the credible intervals |
BetaMedian |
Posterior median of Beta, a |
LambdaHat |
Posterior samples of |
TauHat |
Posterior mean of global scale parameter tau, a positive scalar |
BetaSamples |
Posterior samples of |
TauSamples |
Posterior samples of |
LikelihoodSamples |
Posterior samples of likelihood |
DIC |
Devainace Information Criterion of the fitted model |
WAIC |
Widely Applicable Information Criterion |
References
Stephanie van der Pas, James Scott, Antik Chakraborty and Anirban Bhattacharya (2016). horseshoe: Implementation of the Horseshoe Prior. R package version 0.1.0. https://CRAN.R-project.org/package=horseshoe
Enes Makalic and Daniel Schmidt (2016). High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649
Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422), 669-679.
Examples
burnin <- 100
nmc <- 200
thin <- 1
y.sd <- 1 # statndard deviation of the response
p <- 200 # number of predictors
ntrain <- 250 # training size
ntest <- 100 # test size
n <- ntest + ntrain # sample size
q <- 10 # number of true predictos
beta.t <- c(sample(x = c(1, -1), size = q, replace = TRUE), rep(0, p - q))
x <- mvtnorm::rmvnorm(n, mean = rep(0, p))
zmean <- x %*% beta.t
y <- rnorm(n, mean = zmean, sd = y.sd)
z <- ifelse(y > 0, 1, 0)
X <- scale(as.matrix(x)) # standarization
z <- as.numeric(as.matrix(c(z)))
# Training set
ztrain <- z[1:ntrain]
Xtrain <- X[1:ntrain, ]
# Test set
ztest <- z[(ntrain + 1):n]
Xtest <- X[(ntrain + 1):n, ]
posterior.fit <- probiths(z = ztrain, X = Xtrain, method.tau = "halfCauchy",
burn = burnin, nmc = nmc, thin = 1,
Xtest = Xtest)
posterior.fit$BetaHat
# Posterior processing to recover the significant predictors
cluster <- kmeans(abs(posterior.fit$BetaHat), centers = 2)$cluster # return cluster indices
cluster1 <- which(cluster == 1)
cluster2 <- which(cluster == 2)
min.cluster <- ifelse(length(cluster1) < length(cluster2), 1, 2)
which(cluster == min.cluster) # this matches with the true variables