
Package ‘gridpattern’
July 22, 2025

Type Package

Title 'grid' Pattern Grobs

Version 1.3.1

Description Provides 'grid' grobs that fill in a user-defined area with various patterns. Includes en-
hanced versions of the geometric and image-based patterns originally contained in the 'ggpat-
tern' package as well as original 'pch', 'polygon_tiling', 'regu-
lar_polygon', 'rose', 'text', 'wave', and 'weave' patterns plus support for custom user-defined pat-
terns.

URL https://trevorldavis.com/R/gridpattern/,

https://github.com/trevorld/gridpattern

BugReports https://github.com/trevorld/gridpattern/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>= 3.4.0)

Imports glue, grDevices, grid, memoise, png, rlang, sf, utils

Suggests ambient, aRtsy, ggplot2 (>= 3.5.0), gtable, knitr, magick (>=
2.7.4), ragg (>= 1.2.0), rmarkdown, scales, svglite (>= 2.1.0),
testthat, vdiffr (>= 1.0.6)

VignetteBuilder knitr, rmarkdown

NeedsCompilation no

Author Trevor L. Davis [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6341-4639>),

Mike FC [aut] (Code/docs adapted from ggpattern),
ggplot2 authors [ctb] (some utility functions copied from ggplot2)

Maintainer Trevor L. Davis <trevor.l.davis@gmail.com>

Repository CRAN

Date/Publication 2025-01-16 19:50:07 UTC

1

https://trevorldavis.com/R/gridpattern/
https://github.com/trevorld/gridpattern
https://github.com/trevorld/gridpattern/issues
https://orcid.org/0000-0001-6341-4639

2 gridpattern-package

Contents
gridpattern-package . 2
alphaMaskGrob . 4
clippingPathGrob . 5
grid.pattern . 7
grid.pattern_ambient . 10
grid.pattern_aRtsy . 13
grid.pattern_circle . 14
grid.pattern_crosshatch . 16
grid.pattern_fill . 18
grid.pattern_gradient . 19
grid.pattern_image . 21
grid.pattern_magick . 23
grid.pattern_none . 25
grid.pattern_pch . 26
grid.pattern_placeholder . 29
grid.pattern_plasma . 31
grid.pattern_polygon_tiling . 32
grid.pattern_regular_polygon . 36
grid.pattern_rose . 39
grid.pattern_stripe . 41
grid.pattern_text . 43
grid.pattern_wave . 46
grid.pattern_weave . 48
guess_has_R4.1_features . 50
mean_col . 51
patternFill . 52
pattern_hex . 53
pattern_square . 55
pattern_weave . 57
reset_image_cache . 59
star_scale . 59
update_alpha . 60

Index 62

gridpattern-package gridpattern: ’grid’ Pattern Grobs

Description

Provides ’grid’ grobs that fill in a user-defined area with various patterns. Includes enhanced ver-
sions of the geometric and image-based patterns originally contained in the ’ggpattern’ package
as well as original ’pch’, ’polygon_tiling’, ’regular_polygon’, ’rose’, ’text’, ’wave’, and ’weave’
patterns plus support for custom user-defined patterns.

gridpattern-package 3

Package options

The following gridpattern options may be set globally via base::options():

ggpattern_array_funcs Set custom “array” pattern functions.

ggpattern_geometry_funcs Set custom “geometry” pattern functions.

ggpattern_res Set custom raster image resolution (pixels per inch) for certain patterns.

ggpattern_use_R4.1_clipping If TRUE use the grid clipping path feature introduced in R v4.1.0.
If FALSE do a rasterGrob approximation of the clipped pattern. If NULL try to guess an
appropriate choice.

ggpattern_use_R4.1_features If TRUE sets the default for all the other ggpattern_use_R4.1_*
options arguments to TRUE. If FALSE sets them to FALSE.

ggpattern_use_R4.1_gradients If TRUE use the grid gradient feature introduced in R v4.1.0. If
FALSE do a rasterGrob approximation of the gradient pattern. If NULL try to guess an appro-
priate choice.

ggpattern_use_R4.1_masks If TRUE use the grid mask feature introduced in R v4.1.0. If FALSE
do a rasterGrob approximation of the masked pattern. If NULL try to guess an appropriate
choice.

ggpattern_use_R4.1_patterns If TRUE use the grid pattern feature introduced in R v4.1.0. Cur-
rently only used by a couple of examples.

Note to use the R v4.1.0 features one needs R be (at least) version 4.1 and not all graphic de-
vices support any/all these features. See https://www.stat.auckland.ac.nz/~paul/Reports/
GraphicsEngine/definitions/definitions.html for more information on these features.

Author(s)

Maintainer: Trevor L. Davis <trevor.l.davis@gmail.com> (ORCID)

Authors:

• Mike FC (Code/docs adapted from ggpattern)

Other contributors:

• ggplot2 authors (some utility functions copied from ggplot2) [contributor]

See Also

Useful links:

• https://trevorldavis.com/R/gridpattern/

• https://github.com/trevorld/gridpattern

• Report bugs at https://github.com/trevorld/gridpattern/issues

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/definitions/definitions.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/definitions/definitions.html
https://orcid.org/0000-0001-6341-4639
https://trevorldavis.com/R/gridpattern/
https://github.com/trevorld/gridpattern
https://github.com/trevorld/gridpattern/issues

4 alphaMaskGrob

alphaMaskGrob Mask grob using another grob to specify the (alpha) mask

Description

alphaMaskGrob() masks a grob using another grob to specify the (alpha) mask.

Usage

alphaMaskGrob(
maskee,
masker,
use_R4.1_masks = getOption("ggpattern_use_R4.1_masks",
getOption("ggpattern_use_R4.1_features")),

png_device = NULL,
res = getOption("ggpattern_res", 72),
name = NULL,
gp = gpar(),
vp = NULL

)

Arguments

maskee Grob to be masked

masker Grob that defines masking region

use_R4.1_masks If TRUE use the grid mask feature introduced in R v4.1.0. If FALSE do a rasterGrob
approximation. If NULL try to guess an appropriate choice. Note not all graphic
devices support the grid mask feature.

png_device “png” graphics device to save intermediate raster data with if use_R4.1_masks
is FALSE. If NULL and suggested package ragg is available and versions are high
enough we directly capture masked raster via ragg::agg_capture(). Oth-
erwise we will use png_device (default ragg::agg_png() if available else
grDevices::png()) and png::readPNG() to manually compute a masked raster.

res Resolution of desired rasterGrob in pixels per inch if use_R4.1_masks is
FALSE.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Value

A grid grob

clippingPathGrob 5

Examples

May take more than 5 seconds on CRAN servers
if (capabilities("png") && require("grid")) {

maskee <- patternGrob("circle", gp = gpar(col = "black", fill = "yellow"),
spacing = 0.1, density = 0.5)

angle <- seq(2 * pi / 4, by = 2 * pi / 6, length.out = 7)
x_hex_outer <- 0.5 + 0.5 * cos(angle)
y_hex_outer <- 0.5 + 0.5 * sin(angle)
x_hex_inner <- 0.5 + 0.25 * cos(rev(angle))
y_hex_inner <- 0.5 + 0.25 * sin(rev(angle))
gp <- gpar(lwd = 0, col = NA, fill = "white")
masker <- grid::pathGrob(x = c(x_hex_outer, x_hex_inner),

y = c(y_hex_outer, y_hex_inner),
id = rep(1:2, each = 7),
rule = "evenodd", gp = gp)

masked <- alphaMaskGrob(maskee, masker, use_R4.1_masks = FALSE)
grid.draw(masked)

}
if (capabilities("png") && require("grid")) {

maskee_transparent <- rectGrob(gp = gpar(col = NA, fill = "blue"))
gp <- gpar(lwd = 20, col = "black", fill = grDevices::rgb(0, 0, 0, 0.5))
masker_transparent <- editGrob(masker, gp = gp)
masked_transparent <- alphaMaskGrob(maskee_transparent,

masker_transparent,
use_R4.1_masks = FALSE)

grid.newpage()
grid.draw(masked_transparent)

}

clippingPathGrob Clip grob using another grob to specify the clipping path

Description

clippingPathGrob() clips a grob using another grob to specify the clipping path

Usage

clippingPathGrob(
clippee,
clipper,
use_R4.1_clipping = getOption("ggpattern_use_R4.1_clipping",
getOption("ggpattern_use_R4.1_features")),

png_device = NULL,
res = getOption("ggpattern_res", 72),
name = NULL,
gp = gpar(),
vp = NULL

)

6 clippingPathGrob

Arguments

clippee Grob to be clipped

clipper Grob that defines clipping region

use_R4.1_clipping

If TRUE use the grid clipping path feature introduced in R v4.1.0. If FALSE do a
rasterGrob approximation. If NULL try to guess an appropriate choice. Note not
all graphic devices support the grid clipping path feature and the grid clipping
path feature does not nest.

png_device “png” graphics device to save intermediate raster data with if use_R4.1_clipping
is FALSE. If NULL and suggested package ragg is available and versions are high
enough we directly capture clipped raster via ragg::agg_capture(). Oth-
erwise we will use png_device (default ragg::agg_png() if available else
grDevices::png()) and png::readPNG() to manually compute a clipped raster.

res Resolution of desired rasterGrob in pixels per inch if use_R4.1_clipping is
FALSE.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Value

A grid grob

Examples

if (capabilities("png") && require("grid")) {
clippee <- patternGrob("circle", gp = gpar(col = "black", fill = "yellow"),

spacing = 0.1, density = 0.5)
angle <- seq(2 * pi / 4, by = 2 * pi / 6, length.out = 7)
x_hex_outer <- 0.5 + 0.5 * cos(angle)
y_hex_outer <- 0.5 + 0.5 * sin(angle)
x_hex_inner <- 0.5 + 0.25 * cos(rev(angle))
y_hex_inner <- 0.5 + 0.25 * sin(rev(angle))
clipper <- grid::pathGrob(x = c(x_hex_outer, x_hex_inner),

y = c(y_hex_outer, y_hex_inner),
id = rep(1:2, each = 7),
rule = "evenodd")

clipped <- clippingPathGrob(clippee, clipper, use_R4.1_clipping = FALSE)
grid.newpage()
grid.draw(clipped)

}

grid.pattern 7

grid.pattern Create patterned grobs by pattern name

Description

grid.pattern() draws patterned shapes onto the graphic device. patternGrob() returns the grid
grob objects. names_pattern is a character vector of builtin patterns.

Usage

grid.pattern(
pattern = "stripe",
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
legend = FALSE,
prefix = "pattern_",
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

names_pattern

patternGrob(
pattern = "stripe",
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
legend = FALSE,
prefix = "pattern_",
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

pattern Name of pattern. See Details section for a list of supported patterns.

x A numeric vector or unit object specifying x-locations of the pattern boundary.

8 grid.pattern

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Pattern parameters.

legend Whether this is intended to be drawn in a legend or not.

prefix Prefix to prepend to the name of each of the pattern parameters in For com-
patibility with ggpattern most underlying functions assume parameters begin-
ning with pattern_.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Format

An object of class character of length 19.

Details

Here is a list of the various patterns supported:

ambient Noise array patterns onto the graphic device powered by the ambient package. See
grid.pattern_ambient() for more information.

aRtsy Patterns powered by the aRtsy package. See grid.pattern_aRtsy() for more information.

circle Circle geometry patterns. See grid.pattern_circle() for more information.

crosshatch Crosshatch geometry patterns. See grid.pattern_crosshatch() for more informa-
tion.

gradient Gradient array/geometry patterns. See grid.pattern_gradient() for more informa-
tion.

image Image array patterns. See grid.pattern_image() for more information.

magick imagemagick array patterns. See grid.pattern_magick() for more information.

none Does nothing. See grid::grid.null() for more information.

pch Plotting character geometry patterns. See grid.pattern_pch() for more information.

placeholder Placeholder image array patterns. See grid.pattern_placeholder() for more in-
formation.

plasma Plasma array patterns. See grid.pattern_plasma() for more information.

polygon_tiling Polygon tiling patterns. See grid.pattern_polygon_tiling() for more infor-
mation.

regular_polygon Regular polygon patterns. See grid.pattern_regular_polygon() for more
information.

grid.pattern 9

rose Rose array/geometry patterns. See grid.pattern_rose() for more information.

stripe Stripe geometry patterns. See grid.pattern_stripe() for more information.

text Text array/geometry patterns. See grid.pattern_text() for more information.

wave Wave geometry patterns. See grid.pattern_wave() for more information.

weave Weave geometry patterns. See grid.pattern_weave() for more information.

Custom geometry-based patterns See https://trevorldavis.com/R/gridpattern/dev/articles/
developing-patterns.html for more information.

Custom array-based patterns See https://trevorldavis.com/R/gridpattern/dev/articles/
developing-patterns.html for more information.

Value

A grid grob object (invisibly in the case of grid.pattern()). If draw is TRUE then grid.pattern()
also draws to the graphic device as a side effect.

See Also

https://coolbutuseless.github.io/package/ggpattern/index.html for more details on the
ggpattern package.

Examples

print(names_pattern)
May take more than 5 seconds on CRAN servers
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))

geometry-based patterns
'stripe' pattern
grid::grid.newpage()
grid.pattern("stripe", x_hex, y_hex,

colour="black", fill=c("yellow", "blue"), density = 0.5)

Can alternatively use "gpar()" to specify colour and line attributes
grid::grid.newpage()
grid.pattern("stripe", x_hex, y_hex,

gp = grid::gpar(col="blue", fill="red", lwd=2))

'weave' pattern
grid::grid.newpage()
grid.pattern("weave", x_hex, y_hex, type = "satin",

colour = "black", fill = "lightblue", fill2 = "yellow",
density = 0.3)

'regular_polygon' pattern
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, colour = "black",

fill = c("blue", "yellow", "red"),
shape = c("convex4", "star8", "circle"),
density = c(0.45, 0.42, 0.4),

https://trevorldavis.com/R/gridpattern/dev/articles/developing-patterns.html
https://trevorldavis.com/R/gridpattern/dev/articles/developing-patterns.html
https://trevorldavis.com/R/gridpattern/dev/articles/developing-patterns.html
https://trevorldavis.com/R/gridpattern/dev/articles/developing-patterns.html
https://coolbutuseless.github.io/package/ggpattern/index.html

10 grid.pattern_ambient

spacing = 0.08, angle = 0)

can be used to achieve a variety of 'tiling' effects
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, color = "transparent",

fill = c("white", "grey", "black"),
density = 1.0, spacing = 0.1,
shape = "convex6", grid = "hex")

if (suppressPackageStartupMessages(requireNamespace("magick", quietly = TRUE))) {
array-based patterns
'image' pattern
logo_filename <- system.file("img", "Rlogo.png" , package="png")
grid::grid.newpage()
grid.pattern("image", x_hex, y_hex, filename=logo_filename, type="fit")

}
if (suppressPackageStartupMessages(requireNamespace("magick", quietly = TRUE))) {

'plasma' pattern
grid::grid.newpage()
grid.pattern("plasma", x_hex, y_hex, fill="green")

}

grid.pattern_ambient Ambient patterned grobs

Description

grid.pattern_ambient() draws noise patterns onto the graphic device powered by the ambient
package.

Usage

grid.pattern_ambient(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
type = "simplex",
fill = gp$fill %||% "grey80",
fill2 = "#4169E1",
frequency = 0.01,
interpolator = "quintic",
fractal = switch(type, worley = "none", "fbm"),
octaves = 3,
lacunarity = 2,
gain = 0.5,
pertubation = "none",
pertubation_amplitude = 1,
value = "cell",

grid.pattern_ambient 11

distance_ind = c(1, 2),
jitter = 0.45,
res = getOption("ggpattern_res", 72),
alpha = NA_real_,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

type Either cubic, perlin, simplex, value, white, or worley

fill Colour.

fill2 Second colour.

frequency Determines the granularity of the features in the noise.

interpolator How should values between sampled points be calculated? Either 'linear',
'hermite', or 'quintic' (default), ranging from lowest to highest quality.

fractal The fractal type to use. Either 'none', 'fbm' (default), 'billow', or 'rigid-multi'.
It is suggested that you experiment with the different types to get a feel for how
they behaves.

octaves The number of noise layers used to create the fractal noise. Ignored if fractal
= 'none'. Defaults to 3.

lacunarity The frequency multiplier between successive noise layers when building fractal
noise. Ignored if fractal = 'none'. Defaults to 2.

gain The relative strength between successive noise layers when building fractal noise.
Ignored if fractal = 'none'. Defaults to 0.5.

pertubation The pertubation to use. Either 'none' (default), 'normal', or 'fractal'. De-
fines the displacement (warping) of the noise, with 'normal' giving a smooth
warping and 'fractal' giving a more eratic warping.

pertubation_amplitude

The maximal pertubation distance from the origin. Ignored if pertubation =
'none'. Defaults to 1.

value The noise value to return. Either

• 'value' (default) A random value associated with the closest point
• 'distance' The distance to the closest point
• 'distance2' The distance to the nth closest point (n given by distance_ind[1])

12 grid.pattern_ambient

• 'distance2add' Addition of the distance to the nth and mth closest point
given in distance_ind

• 'distance2sub' Substraction of the distance to the nth and mth closest
point given in distance_ind

• 'distance2mul' Multiplication of the distance to the nth and mth closest
point given in distance_ind

• 'distance2div' Division of the distance to the nth and mth closest point
given in distance_ind

distance_ind Reference to the nth and mth closest points that should be used when calculating
value.

jitter The maximum distance a point can move from its start position during sampling
of cell points.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

For more information about the noise types please see the relevant ambient documentation: ambient::noise_cubic(),
ambient::noise_perlin(), ambient::noise_simplex(), ambient::noise_value(), ambient::noise_white(),
and ambient::noise_worley(). grid.pattern_plasma() provides an alternative noise pattern
that depends on magick.

Examples

if (requireNamespace("ambient", quietly = TRUE)) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_ambient(x_hex, y_hex, fill = "green", fill2 = "blue")

}
if (requireNamespace("ambient")) {

grid::grid.newpage()
grid.pattern_ambient(x_hex, y_hex, fill = "green", fill2 = "blue", type = "cubic")

}

grid.pattern_aRtsy 13

grid.pattern_aRtsy Grobs with patterns powered by the aRtsy package

Description

grid.pattern_aRtsy() draws patterns powered by the aRtsy package. names_aRtsy() returns
character vector of supported types.

Usage

grid.pattern_aRtsy(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
type = "strokes",
fill = gp$fill %||% "grey80",
alpha = gp$alpha %||% NA_real_,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

names_aRtsy()

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored

type Name of pattern.

fill Passed to the underlying aRtsy function’s color / colors argument.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

14 grid.pattern_circle

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

https://koenderks.github.io/aRtsy/ for more information about the aRtsy package.

Examples

if (requireNamespace("aRtsy", quietly = TRUE)) {
print(names_aRtsy())

}

Make take more than 5 seconds on CRAN servers
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
if (requireNamespace("aRtsy", quietly = TRUE) &&

guess_has_R4.1_features("patterns")) {
grid::grid.newpage()
grid.pattern_aRtsy(x_hex, y_hex, type = "forest",

fill = c("black", "white", "grey"))
}

grid.pattern_circle Circle patterned grobs

Description

grid.pattern_circle() draws a circle pattern onto the graphic device.

Usage

grid.pattern_circle(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,

https://koenderks.github.io/aRtsy/

grid.pattern_circle 15

linewidth = size %||% gp$lwd %||% 1,
size = NULL,
grid = "square",
type = NULL,
subtype = NULL,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

fill Fill colour(s) or grid::pattern() / gradient object(s).

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type Adjusts the repeating of certain aesthetics such as color. Can use any type in
names_hex, names_square, or names_weave. See for pattern_hex(), pattern_square(),
and pattern_weave() for more information about supported type arguments.

subtype See for pattern_hex(), pattern_square(), and pattern_weave() for more
information about supported subtype arguments.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

16 grid.pattern_crosshatch

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

See grid.pattern_regular_polygon() for a more general case of this pattern.

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_circle(x_hex, y_hex, fill = c("blue", "yellow"), density = 0.5)
grid::grid.newpage()
grid.pattern_circle(x_hex, y_hex, density = 0.8, grid = "hex_circle",

gp = grid::gpar(fill = c("blue", "yellow", "red")))
grid::grid.newpage()
grid.pattern_circle(x_hex, y_hex, density = 1.2, grid = "hex_circle",

gp = grid::gpar(fill = c("blue", "yellow", "red")))
using a "twill_zigzag" 'weave' pattern
grid::grid.newpage()
grid.pattern_circle(x_hex, y_hex, fill = "blue", density = 0.5, type = "twill_zigzag")

grid.pattern_crosshatch

Crosshatch patterned grobs

Description

grid.pattern_crosshatch() draws a crosshatch pattern onto the graphic device.

Usage

grid.pattern_crosshatch(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
fill2 = fill,
angle = 30,
density = 0.2,

grid.pattern_crosshatch 17

spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
grid = "square",
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

fill Fill colour(s) or grid::pattern() / gradient object(s).

fill2 The fill colour for the “top” crosshatch lines.

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

18 grid.pattern_fill

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid.pattern_weave() which interweaves two sets of lines. For a single set of lines use grid.pattern_stripe().

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_crosshatch(x_hex, y_hex, colour = "black", fill = "blue",

fill2 = "yellow", density = 0.5)
grid::grid.newpage()
grid.pattern_crosshatch(x_hex, y_hex, density = 0.3,

gp = grid::gpar(col = "blue", fill = "yellow"))

grid.pattern_fill Grobs with a simple fill pattern

Description

grid.pattern_fill() draws a simple fill pattern onto the graphics device.

Usage

grid.pattern_fill(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
fill = gp$fill %||% "grey80",
alpha = gp$alpha %||% NA_real_,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

grid.pattern_gradient 19

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored

fill Fill colour(s) or grid::pattern() / gradient object(s).

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid::grid.polygon()

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_fill(x_hex, y_hex, fill = "blue")

if (guess_has_R4.1_features("patterns")) {
grid::grid.newpage()
stripe_fill <- patternFill("stripe", fill = c("red", "blue"))
grid.pattern_fill(x_hex, y_hex, fill = stripe_fill)

}

grid.pattern_gradient Gradient patterned grobs

Description

grid.pattern_gradient() draws a gradient pattern onto the graphic device.

20 grid.pattern_gradient

Usage

grid.pattern_gradient(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
fill = gp$fill %||% "grey80",
fill2 = "#4169E1",
orientation = "vertical",
alpha = gp$alpha %||% NA_real_,
use_R4.1_gradients = getOption("ggpattern_use_R4.1_gradients",
getOption("ggpattern_use_R4.1_features")),

aspect_ratio = 1,
key_scale_factor = 1,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

fill Colour.

fill2 Second colour.

orientation vertical, horizontal, or radial.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).
use_R4.1_gradients

Whether to use the gradient feature introduced in R v4.1 or use a rasterGrob
approximation. Note not all graphic devices support the grid gradient feature.

aspect_ratio Override aspect ratio.
key_scale_factor

Additional scale factor for legend.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

grid.pattern_image 21

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

Examples

if (requireNamespace("magick") && capabilities("png")) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_gradient(x_hex, y_hex, fill = "green")

}
if (requireNamespace("magick") && capabilities("png")) {

grid::grid.newpage()
grid.pattern_gradient(x_hex, y_hex, fill = "green", orientation = "radial")

}

grid.pattern_image Image patterned grobs

Description

grid.pattern_image() draws an image pattern onto the graphic device.

Usage

grid.pattern_image(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
filename = "",
type = "fit",
scale = 1,
gravity = switch(type, tile = "southwest", "center"),
filter = "lanczos",
alpha = gp$alpha %||% NA_real_,
aspect_ratio = 1,
key_scale_factor = 1,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),

22 grid.pattern_image

draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

filename Image of filename or URL

type Image scaling type

scale Extra scaling

gravity Position of image within area. magick::gravity_types() returns a vector of
supported values.

filter Filter to use when scaling. magick::filter_types() returns a vector of sup-
ported values.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

aspect_ratio Override aspect ratio.
key_scale_factor

Additional scale factor for legend.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Here is a description of the type arguments:

expand Scale the image beyond the bounding box and crop it such that the image fully covers the
width and the height of the region.

fit Scale the image such that either the width or the height of the image fits in the bounding box.
Affected by gravity

none Position a single image in the region without attempting to scale to the bounding box size.
Affected by scale and gravity.

squish Distort the image to cover the bounding box of the region.

tile Repeat the image to cover the bounding box. Affected by tile.

grid.pattern_magick 23

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid.pattern_placeholder() is an image pattern that uses images downloaded from the internet.
reset_image_cache() resets the image cache used by grid.pattern_image() and grid.pattern_placeholder().

Examples

May emit a "CPU time > 2.5 times elapsed time" NOTE in a CRAN check
if (requireNamespace("magick")) {

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
logo_filename <- system.file("img", "Rlogo.png" , package = "png")
grid.pattern_image(x_hex, y_hex, filename = logo_filename, type = "fit")

}
if (requireNamespace("magick")) {

"tile" `type` image pattern depends on `magick` functionality
which is not reliable across platforms
grid::grid.newpage()
try(grid.pattern_image(x_hex, y_hex, filename = logo_filename,

type = "tile"))
}

grid.pattern_magick Magick patterned grobs

Description

grid.pattern_magick() draws a imagemagick pattern onto the graphic device. names_magick,
names_magick_intensity, and names_magick_stripe are character vectors of supported type
values plus subsets for shaded intensity and stripes.

Usage

grid.pattern_magick(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
type = "hexagons",
fill = "grey20",
scale = 1,
filter = "box",
alpha = gp$alpha %||% NA_real_,
aspect_ratio = 1,

24 grid.pattern_magick

key_scale_factor = 1,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

names_magick

names_magick_intensity

names_magick_stripe

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

type Magick pattern types. names_magick, names_magick_intensity, and names_magick_stripe
are character vectors of supported type values plus subsets for shaded intensity
and stripes.

fill Fill colour

scale Extra scaling

filter Filter to use when scaling. magick::filter_types() returns a vector of sup-
ported values.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

aspect_ratio Override aspect ratio.

key_scale_factor

Additional scale factor for legend.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

grid.pattern_none 25

Format

An object of class character of length 54.

An object of class character of length 21.

An object of class character of length 19.

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

The imagemagick documentation http://www.imagemagick.org/script/formats.php for more
information.

Examples

if (requireNamespace("magick")) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_magick(x_hex, y_hex, type="octagons", fill="blue", scale=2)

}

supported magick pattern names
print(names_magick)

grid.pattern_none Grobs without any pattern

Description

grid.pattern_none() draws nothing onto the graphic device.

Usage

grid.pattern_none(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

http://www.imagemagick.org/script/formats.php

26 grid.pattern_pch

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid::grid.null()

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_none(x_hex, y_hex)

grid.pattern_pch Plotting character patterned grobs

Description

grid.pattern_pch() draws a plotting character pattern onto the graphic device.

Usage

grid.pattern_pch(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,

grid.pattern_pch 27

density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
scale = 0.5,
shape = 1L,
grid = "square",
type = NULL,
subtype = NULL,
rot = 0,
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.
y A numeric vector or unit object specifying y-locations of the pattern boundary.
id A numeric vector used to separate locations in x, y into multiple boundaries. All

locations within the same id belong to the same boundary.
... Currently ignored.
colour Stroke colour(s).
fill Fill colour(s) or grid::pattern() / gradient object(s).
angle Rotation angle in degrees.
density Approx. fraction of area the pattern fills.
spacing Spacing between repetitions of pattern (in units units).
xoffset Shift pattern along x axis (in units units).
yoffset Shift pattern along y axis (in units units).
units grid::unit() units for spacing, xoffset, and yoffset parameters.
scale For star polygons, multiplier (between 0 and 1) applied to exterior radius to get

interior radius.
shape An integer from 0 to 25 or NA. See graphics::points() for more details. Note

we only support these shapes and do not support arbitrary ASCII / Unicode
characters.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

28 grid.pattern_pch

type Adjusts the repeating of certain aesthetics such as color. Can use any type in
names_hex, names_square, or names_weave. See for pattern_hex(), pattern_square(),
and pattern_weave() for more information about supported type arguments.

subtype See for pattern_hex(), pattern_square(), and pattern_weave() for more
information about supported subtype arguments.

rot Angle to rotate regular polygon (degrees, counter-clockwise).

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid.pattern_regular_polygon() which is used to implement this pattern.

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
gp <- grid::gpar(col = "black", fill = "lightblue")

if (capabilities("png") || guess_has_R4.1_features("masks")) {
pch 0-6 are simple shapes with no fill
grid.pattern_pch(x_hex, y_hex, shape = 0:6, gp = gp,

spacing = 0.1, density = 0.4, angle = 0)
}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

pch 7-14 are compound shapes with no fill
grid::grid.newpage()
grid.pattern_pch(x_hex, y_hex, shape = 7:14, gp = gp,

spacing = 0.1, density = 0.4, angle = 0)
}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

pch 15-20 are filled with 'col'
grid::grid.newpage()
grid.pattern_pch(x_hex, y_hex, shape = 15:20, gp = gp,

grid.pattern_placeholder 29

spacing = 0.1, density = 0.4, angle = 0)
}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

pch 21-25 are filled with 'fill'
grid::grid.newpage()
grid.pattern_pch(x_hex, y_hex, shape = 21:25, gp = gp,

spacing = 0.1, density = 0.4, angle = 0)
}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

using a 'basket' weave `type` with two shapes
grid::grid.newpage()
grid.pattern_pch(x_hex, y_hex, shape = c(1,4), gp = gp,

type = "basket",
spacing = 0.1, density = 0.4, angle = 0)

}

grid.pattern_placeholder

Placeholder image patterned grobs

Description

grid.pattern_placeholder() draws a placeholder image pattern onto the graphic device. names_placeholder
are character vectors of supported placeholder types.

Usage

grid.pattern_placeholder(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
type = "bear",
alpha = gp$alpha %||% NA_real_,
aspect_ratio = 1,
key_scale_factor = 1,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

names_placeholder

30 grid.pattern_placeholder

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

type Image source. names_placeholder is a vector of supported values. If you
would like only greyscale images append bw to the name.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

aspect_ratio Override aspect ratio.
key_scale_factor

Additional scale factor for legend.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Format

An object of class character of length 22.

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

reset_image_cache() resets the image cache used by grid.pattern_image() and grid.pattern_placeholder().

Examples

if (requireNamespace("magick")) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
requires internet connection to download from placeholder image websites
try(grid.pattern_placeholder(x_hex, y_hex, type="bear"))

}

print(names_placeholder)

grid.pattern_plasma 31

grid.pattern_plasma Plasma patterned grobs

Description

grid.pattern_plasma() draws a plasma pattern onto the graphic device.

Usage

grid.pattern_plasma(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
fill = gp$fill %||% "grey80",
scale = 1,
alpha = gp$alpha %||% NA_real_,
aspect_ratio = 1,
key_scale_factor = 1,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

fill Colour.

scale Extra scaling

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

aspect_ratio Override aspect ratio.
key_scale_factor

Additional scale factor for legend.

res Assumed resolution (in pixels per graphic device inch) to use when creating
array pattern.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

32 grid.pattern_polygon_tiling

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid.pattern_ambient() provides a noise pattern using the ambient package. Pseudorandom
seeds for the plasma pattern may be set via magick::magick_set_seed().

Examples

if (requireNamespace("magick")) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_plasma(x_hex, y_hex, fill = "green")

}

grid.pattern_polygon_tiling

Polygon tiling patterned grobs

Description

grid.pattern_polygon_tiling() draws a specified polygon tiling pattern onto the graphic de-
vice. names_polygon_tiling lists all supported types.

Usage

grid.pattern_polygon_tiling(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
type = "square",

grid.pattern_polygon_tiling 33

alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

names_polygon_tiling

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

fill Fill colour(s) or grid::pattern() / gradient object(s).

angle Rotation angle in degrees.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

type Name of polygon tiling to draw. See Details.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value). Not
supported for all polygon tiling type.

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Format

An object of class character of length 36.

34 grid.pattern_polygon_tiling

Details

grid.pattern_polygon_tiling() supports 1, 2, or 3 fill colors with the first colors (weakly)
covering a larger area. Size of the pattern is controlled by spacing. We support the following
polygon tiling types:

elongated_triangular Creates an elongated triangular tiling made of squares and triangles.

herringbone Creates a herringbone tiling made of rectangles.

hexagonal Creates a hexagonal tiling made of hexagons.

pythagorean Creates a Pythagorean tiling made of squares of two different sizes.

rhombille Creates a rhombille tiling made of rhombi.

rhombitrihexagonal Creates a rhombitrihexagonal tiling made out of dodecagons, hexagons, and
squares.

snub_square Creates a snub square tiling made of squares and triangles.

snub_trihexagonal Creates a snub trihexagonal tiling made of hexagons and triangles.

square Creates a square tiling made of squares.

tetrakis_square Creates a tetrakis square tiling made of isosceles right triangles.

triangular Creates a triangular tiling made of equilateral triangles.

trihexagonal Creates a trihexagonal tiling made of hexagons and triangles.

truncated_square Creates a truncated square tiling made of octagons and squares.

truncated_hexagonal Creates a truncated hexagonal tiling made of dodecagons and triangles.

truncated_trihexagonal Creates a truncated trihexagonal tiling made of hexagons, squares, and
triangles.

2*.2**.2*.2** Creates a polygon tiling made of rhombi.

2**.3**.12* Creates a polygon tiling made of rhombi, triangles, and twelve-pointed stars.

3.3.3.3** Creates a polygon tiling made of triangles.

3.3*.3.3** Creates a regular (star) polygon tiling made of triangles and three-pointed stars.

3.3.3.12*.3.3.12* Creates a regular (star) polygon tiling made of triangles and twelve-pointed
stars.

3.3.8*.3.4.3.8* Creates a regular (star) polygon tiling made of triangles, squares, and eight-
pointed stars.

3.3.8*.4**.8* Creates a regular (star) polygon tiling made of triangles, four-pointed stars, and
eight-pointed stars.

3.4.6.3.12* Creates a regular (star) polygon tiling made of triangles, squares, hexagons, and
twelve-pointed stars.

3.4.8.3.8* Creates a regular (star) polygon tiling made of triangles, squares, octagons, and eight-
pointed stars.

3.6*.6** Creates a regular (star) polygon tiling made of triangles and six-pointed stars.

4.2*.4.2** Creates a polygon tiling made of squares and rhombi.

4.4*.4** Creates a regular (star) polygon tiling made of squares and four-pointed stars.

4.6.4*.6 Creates a regular (star) polygon tiling made of squares, hexagons, and four-pointed stars.

grid.pattern_polygon_tiling 35

4.6*.4.6*.4.6* Creates a regular (star) polygon tiling made of squares and six-pointed stars.

4.8*.4**.8* Creates a polygon tiling of squares and eight-pointed stars.

6.6*.6.6* Creates a regular (star) polygon tiling made of hexagons and six-pointed stars.

8.4*.8.4* Creates a regular (star) polygon tiling made of octagons and four-pointed stars.

9.3.9.3* Creates a regular (star) polygon tiling made of triangles, nonagons, and three-pointed
stars.

12.3*.12.3* Creates a regular (star) polygon tiling made of dodecagons and three-pointed stars.

12.12.4* Creates a regular (star) polygon tiling made of dodecagons and four-pointed stars.

18.18.3* Creates a regular (star) polygon tiling made of eighteen-sided polygons and three-pointed
stars.

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

The tiling vignette vignette("tiling", package = "gridpattern") for more information about
these tilings as well as more examples of polygon tiling using the grid.pattern_regular_polygon()
function.

Examples

print(names_polygon_tiling)

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
gp1 <- grid::gpar(fill = "yellow", col = "black")
gp2 <- grid::gpar(fill = c("yellow", "red"), col = "black")
gp3 <- grid::gpar(fill = c("yellow", "red", "blue"), col = "black")

grid.pattern_polygon_tiling(x_hex, y_hex, type = "herringbone", gp = gp1)

grid::grid.newpage()
grid.pattern_polygon_tiling(x_hex, y_hex, type = "hexagonal",

spacing = 0.2, gp = gp3)

grid::grid.newpage()
grid.pattern_polygon_tiling(x_hex, y_hex, type = "pythagorean",

spacing = 0.2, gp = gp2)

grid::grid.newpage()
grid.pattern_polygon_tiling(x_hex, y_hex, type = "snub_trihexagonal",

spacing = 0.2, gp = gp3)

grid::grid.newpage()
grid.pattern_polygon_tiling(x_hex, y_hex, type = "rhombille",

spacing = 0.2, gp = gp3)

36 grid.pattern_regular_polygon

grid.pattern_regular_polygon

Regular polygon patterned grobs

Description

grid.pattern_regular_polygon() draws a regular polygon pattern onto the graphic device.

Usage

grid.pattern_regular_polygon(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
scale = 0.5,
shape = "convex4",
grid = "square",
type = NULL,
subtype = NULL,
rot = 0,
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

grid.pattern_regular_polygon 37

... Currently ignored.

colour Stroke colour(s).

fill Fill colour(s) or grid::pattern() / gradient object(s).

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

scale For star polygons, multiplier (between 0 and 1) applied to exterior radius to get
interior radius.

shape Either "convex" or "star" followed by the number of exterior vertices or al-
ternatively "circle", "square", "null", "rhombille_rhombus", "tetrakis_left", or
"tetrakis_right". For example "convex5" corresponds to a pentagon and "star6"
corresponds to a six-pointed star. The "square" shape is larger than the "con-
vex4" shape and is rotated an extra 45 degrees, it can be used to generate a multi-
colored “checkers” effect when density is 1. The "null" shape is not drawn,
it can be used to create holes within multiple-element patterns. The "rhom-
bille_rhombus" shape draws a rhombus while the "tetrakis_left" or "tetrakis_right"
shapes draw an isosceles right triangle. These latter three non-regular-polygon
shapes are intended to help generate rhombille and tetrakis square tilings.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type Adjusts the repeating of certain aesthetics such as color. Can use any type in
names_hex, names_square, or names_weave. See for pattern_hex(), pattern_square(),
and pattern_weave() for more information about supported type arguments.

subtype See for pattern_hex(), pattern_square(), and pattern_weave() for more
information about supported subtype arguments.

rot Angle to rotate regular polygon (degrees, counter-clockwise).

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

38 grid.pattern_regular_polygon

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

grid.pattern_circle() for a special case of this pattern. The tiling vignette features more exam-
ples of regular polygon tiling using this function vignette("tiling", package = "gridpattern").

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))

'density', 'rot', and 'shape' are vectorized
grid.pattern_regular_polygon(x_hex, y_hex, colour = "black",

fill = c("blue", "yellow", "red"),
shape = c("convex4", "star8", "circle"),
density = c(0.45, 0.42, 0.4),
spacing = 0.08, angle = 0)

checker pattern using "square" shape
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, shape = "square",

colour = "transparent",
fill = c("black", "red", "blue", "yellow"),
angle = 0, density = 1.0, spacing = 0.2)

checker pattern using the default "convex4" shape
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, density = 1.0,

colour = "black", fill = "blue")

using a "twill_zigzag" 'weave' pattern
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, fill = c("blue", "yellow"),

shape = c("circle", "star8"),
density = c(0.5, 0.6), type = "twill_zigzag")

hexagon tiling
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, color = "transparent",

fill = c("white", "grey", "black"),
density = 1.0, spacing = 0.1,
shape = "convex6", grid = "hex")

triangle tiling
grid::grid.newpage()
grid.pattern_regular_polygon(x_hex, y_hex, fill = "green",

density = 1.0, spacing = 0.1,
shape = "convex3", grid = "hex")

grid.pattern_rose 39

grid.pattern_rose Rose curve patterned grobs

Description

grid.pattern_rose() draws a rose curve pattern onto the graphic device.

Usage

grid.pattern_rose(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
frequency = 0.1,
grid = "square",
type = NULL,
subtype = NULL,
rot = 0,
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
use_R4.1_masks = getOption("ggpattern_use_R4.1_masks",
getOption("ggpattern_use_R4.1_features")),

png_device = NULL,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

40 grid.pattern_rose

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.
colour Stroke colour(s).
fill Fill colour(s) or grid::pattern() / gradient object(s).
angle Rotation angle in degrees.
density Approx. fraction of area the pattern fills.
spacing Spacing between repetitions of pattern (in units units).
xoffset Shift pattern along x axis (in units units).
yoffset Shift pattern along y axis (in units units).
units grid::unit() units for spacing, xoffset, and yoffset parameters.
frequency The “angular frequency” parameter of the rose pattern.
grid Adjusts placement and density of certain graphical elements. "square" (de-

fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type Adjusts the repeating of certain aesthetics such as color. Can use any type in
names_hex, names_square, or names_weave. See for pattern_hex(), pattern_square(),
and pattern_weave() for more information about supported type arguments.

subtype See for pattern_hex(), pattern_square(), and pattern_weave() for more
information about supported subtype arguments.

rot Angle to rotate rose (degrees, counter-clockwise).
alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).
linetype Stroke linetype.
linewidth Stroke linewidth.
size For backwards compatibility can be used to set linewidth.
use_R4.1_masks If TRUE use the grid mask feature introduced in R v4.1.0. If FALSE do a rasterGrob

approximation. If NULL try to guess an appropriate choice. Note not all graphic
devices support the grid mask feature.

png_device “png” graphics device to save intermediate raster data with if use_R4.1_masks
is FALSE. If NULL and suggested package ragg is available and versions are high
enough we directly capture masked raster via ragg::agg_capture(). Oth-
erwise we will use png_device (default ragg::agg_png() if available else
grDevices::png()) and png::readPNG() to manually compute a masked raster.

res Resolution of desired rasterGrob in pixels per inch if use_R4.1_masks is
FALSE.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.
gp An object of class "gpar", typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

grid.pattern_stripe 41

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

See https://en.wikipedia.org/wiki/Rose_(mathematics) for more information.

Examples

if (capabilities("png") || guess_has_R4.1_features("masks")) {
x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
gp <- grid::gpar(fill = c("blue", "red", "yellow", "green"), col = "black")
grid.pattern_rose(x_hex, y_hex,

spacing = 0.15, density = 0.5, angle = 0,
frequency = 1:4, gp = gp)

}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

grid::grid.newpage()
grid.pattern_rose(x_hex, y_hex,

spacing = 0.15, density = 0.5, angle = 0,
frequency = 1/1:4, gp = gp)

}
if (capabilities("png") || guess_has_R4.1_features("masks")) {

grid::grid.newpage()
grid.pattern_rose(x_hex, y_hex,

spacing = 0.18, density = 0.5, angle = 0,
frequency = c(3/2, 7/3, 5/4, 3/7), gp = gp)

}

grid.pattern_stripe Stripe patterned grobs

Description

grid.pattern_stripe() draws a stripe pattern onto the graphic device.

Usage

grid.pattern_stripe(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
density = 0.2,

https://en.wikipedia.org/wiki/Rose_(mathematics)

42 grid.pattern_stripe

spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
grid = "square",
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

fill Fill colour(s) or grid::pattern() / gradient object(s).

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

grid.pattern_text 43

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also
[grid.pattern_crosshatch()] and [grid.pattern_weave()] for overlaying stripes.

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid.pattern_stripe(x_hex, y_hex, colour = "black",

fill = c("red", "blue"), density = 0.4)

Can alternatively use "gpar()" to specify colour and line attributes
grid::grid.newpage()
grid.pattern_stripe(x_hex, y_hex, density = 0.3,

gp = grid::gpar(col = "blue", fill = "yellow"))

grid.pattern_text Text character patterned grobs

Description

grid.pattern_text() draws a text character pattern onto the graphic device.

Usage

grid.pattern_text(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
angle = 30,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
scale = 0.5,
shape = "X",
grid = "square",

44 grid.pattern_text

type = NULL,
subtype = NULL,
rot = 0,
alpha = gp$alpha %||% NA_real_,
size = gp$fontsize %||% 12,
fontfamily = gp$fontfamily %||% "sans",
fontface = gp$fontface %||% "plain",
use_R4.1_masks = getOption("ggpattern_use_R4.1_masks",
getOption("ggpattern_use_R4.1_features")),

png_device = NULL,
res = getOption("ggpattern_res", 72),
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

angle Rotation angle in degrees.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

scale For star polygons, multiplier (between 0 and 1) applied to exterior radius to get
interior radius.

shape A character or expression vector. See label argument of grid::textGrob()
for more details.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type Adjusts the repeating of certain aesthetics such as color. Can use any type in
names_hex, names_square, or names_weave. See for pattern_hex(), pattern_square(),
and pattern_weave() for more information about supported type arguments.

subtype See for pattern_hex(), pattern_square(), and pattern_weave() for more
information about supported subtype arguments.

grid.pattern_text 45

rot Angle to rotate regular polygon (degrees, counter-clockwise).

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

size Fontsize

fontfamily The font family. See grid::gpar() for more details.

fontface The font face. See grid::gpar() for more details.

use_R4.1_masks If TRUE use the grid mask feature introduced in R v4.1.0. If FALSE do a rasterGrob
approximation. If NULL try to guess an appropriate choice. Note not all graphic
devices support the grid mask feature.

png_device “png” graphics device to save intermediate raster data with if use_R4.1_masks
is FALSE. If NULL and suggested package ragg is available and versions are high
enough we directly capture masked raster via ragg::agg_capture(). Oth-
erwise we will use png_device (default ragg::agg_png() if available else
grDevices::png()) and png::readPNG() to manually compute a masked raster.

res Resolution of desired rasterGrob in pixels per inch if use_R4.1_masks is
FALSE.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

Examples

if (capabilities("png") &&
gridpattern:::device_supports_unicode()) {

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))

playing_card_symbols <- c("\u2660", "\u2665", "\u2666", "\u2663")
grid.pattern_text(x_hex, y_hex,

shape = playing_card_symbols,
colour = c("black", "red", "red", "black"),
size = 18, spacing = 0.1, angle = 0)

}

46 grid.pattern_wave

grid.pattern_wave Wave patterned grobs

Description

grid.pattern_wave() draws a wave pattern onto the graphic device.

Usage

grid.pattern_wave(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
angle = 30,
density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
amplitude = 0.5 * spacing,
frequency = 1/spacing,
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
grid = "square",
type = "triangle",
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

grid.pattern_wave 47

fill Fill colour(s) or grid::pattern() / gradient object(s).

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for amplitude, frequency, spacing, xoffset, and yoffset
parameters.

amplitude Wave amplitude (in units units)

frequency Linear frequency (in inverse units units)

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type Either “sine” or “triangle” (default).

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

Use grid.pattern_stripe() for straight lines instead of waves.

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
grid::grid.newpage()
grid.pattern_wave(x_hex, y_hex, colour = "black", type = "sine",

fill = c("red", "blue"), density = 0.4,
spacing = 0.15, angle = 0,
amplitude = 0.05, frequency = 1 / 0.20)

48 grid.pattern_weave

zig-zag pattern is a wave of `type` "triangle"
grid::grid.newpage()
grid.pattern_wave(x_hex, y_hex, colour = "black", type = "triangle",

fill = c("red", "blue"), density = 0.4,
spacing = 0.15, angle = 0, amplitude = 0.075)

grid.pattern_weave Weave patterned grobs

Description

grid.pattern_weave() draws a weave pattern onto the graphic device.

Usage

grid.pattern_weave(
x = c(0, 0, 1, 1),
y = c(1, 0, 0, 1),
id = 1L,
...,
colour = gp$col %||% "grey20",
fill = gp$fill %||% "grey80",
fill2 = fill,
angle = 30,
density = 0.2,
spacing = 0.05,
xoffset = 0,
yoffset = 0,
units = "snpc",
alpha = gp$alpha %||% NA_real_,
linetype = gp$lty %||% 1,
linewidth = size %||% gp$lwd %||% 1,
size = NULL,
grid = "square",
type = "plain",
subtype = NA,
default.units = "npc",
name = NULL,
gp = gpar(),
draw = TRUE,
vp = NULL

)

Arguments

x A numeric vector or unit object specifying x-locations of the pattern boundary.

grid.pattern_weave 49

y A numeric vector or unit object specifying y-locations of the pattern boundary.

id A numeric vector used to separate locations in x, y into multiple boundaries. All
locations within the same id belong to the same boundary.

... Currently ignored.

colour Stroke colour(s).

fill The fill colour for the horizontal "weft" lines.

fill2 The fill colour for the vertical "warp" lines.

angle Rotation angle in degrees.

density Approx. fraction of area the pattern fills.

spacing Spacing between repetitions of pattern (in units units).

xoffset Shift pattern along x axis (in units units).

yoffset Shift pattern along y axis (in units units).

units grid::unit() units for spacing, xoffset, and yoffset parameters.

alpha Alpha (between 0 and 1) or NA (default, preserves colors’ alpha value).

linetype Stroke linetype.

linewidth Stroke linewidth.

size For backwards compatibility can be used to set linewidth.

grid Adjusts placement and density of certain graphical elements. "square" (de-
fault) is a square grid. "hex" is a hexagonal grid suitable for hexagonal and
triangular tiling. "hex_circle" is a hexagonal grid suitable for circle packing.
"elongated_triangle" is a grid used for the "elongated triangle" tiling.

type The weave type. See pattern_weave() for more details.

subtype The weave subtype. See pattern_weave() for more details.

default.units A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class "gpar", typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Value

A grid grob object invisibly. If draw is TRUE then also draws to the graphic device as a side effect.

See Also

pattern_weave()

50 guess_has_R4.1_features

Examples

x_hex <- 0.5 + 0.5 * cos(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
y_hex <- 0.5 + 0.5 * sin(seq(2 * pi / 4, by = 2 * pi / 6, length.out = 6))
gp <- grid::gpar(colour = "black", fill = "lightblue", lwd=0.5)

Plain weave (default weave)
grid.pattern_weave(x_hex, y_hex, fill2 = "yellow",

gp = gp, spacing = 0.1, density = 0.3)

Irregular matt weave
grid::grid.newpage()
grid.pattern_weave(x_hex, y_hex, type = "matt_irregular",

fill2 = "yellow", gp = gp, spacing = 0.1, density = 0.3)

Twill weave
grid::grid.newpage()
grid.pattern_weave(x_hex, y_hex, type = "twill",

fill2 = "yellow", gp = gp, spacing = 0.1, density = 0.3)

Zig-zag twill
grid::grid.newpage()
grid.pattern_weave(x_hex, y_hex, type = "twill_zigzag",

fill2 = "yellow", gp = gp, spacing = 0.05, density = 0.7)

Herringbone twill with density 1
grid::grid.newpage()
gp$col <- NA
grid.pattern_weave(x_hex, y_hex, type = "twill_herringbone",

fill2 = "yellow", gp = gp, spacing = 0.05, density = 1.0)

guess_has_R4.1_features

Guess whether "active" graphics device supports the grid graphics
features introduced in R v4.1.

Description

guess_has_R4.1_features() guesses whether "active" graphics device supports the grid graphics
features introduced in R v4.1. If it guesses it does it returns TRUE else FALSE.

Usage

guess_has_R4.1_features(
features = c("clippingPaths", "gradients", "masks", "patterns")

)

mean_col 51

Arguments

features Character vector of features to guess support for. Will return TRUE only if
guesses support for all requested features.

"clippingPaths" Supports clipping path feature
"gradients" Supports (both linear and radial) gradient feature
"masks" Supports (alpha) mask feature
"patterns" Supports (tiling) pattern feature

Value

TRUE if we guess all features are supported else FALSE

Usage in other packages

To avoid taking a dependency on gridpattern you may copy the source of guess_has_R4.1_features()
into your own package under the permissive MIT No Attribution (MIT-0) license. Either use
usethis::use_standalone("trevorld/gridpattern", "standalone-guess_has_R4.1_features.R")
or copy the file standalone-guess_has_R4.1_features.R into your R directory and add grDevices
and utils to the Imports of your DESCRIPTION file.

See Also

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/definitions/definitions.
html for more info about the new grid graphics features introduced in R v4.1.

Examples

If R version (weakly) greater than 4.1 should be TRUE
pdf(tempfile(fileext = ".pdf"))
print(guess_has_R4.1_features())
invisible(dev.off())

Should be FALSE
postscript(tempfile(fileext = ".ps"))
print(guess_has_R4.1_features())
invisible(dev.off())

mean_col Compute average color

Description

mean_col() computes an average color.

Usage

mean_col(...)

https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/definitions/definitions.html
https://www.stat.auckland.ac.nz/~paul/Reports/GraphicsEngine/definitions/definitions.html

52 patternFill

Arguments

... Colors to average

Details

We currently compute an average color by using the quadratic mean of the colors’ RGBA values.

Value

A color string of 9 characters: "#" followed by the red, blue, green, and alpha values in hexadecimal.

Examples

mean_col("black", "white")
mean_col(c("black", "white"))
mean_col("red", "blue")

patternFill Create patterned fills by pattern name

Description

patternFill() returns grid::pattern() fill objects. It is a wrapper around patternGrob().

Usage

patternFill(
...,
x = 0.5,
y = 0.5,
width = 1,
height = 1,
default.units = "npc",
just = "centre",
hjust = NULL,
vjust = NULL,
group = TRUE

)

Arguments

... Passed to patternGrob().
x, y, width, height

The size of the grid::pattern() tile.

default.units The default grid::unit() unit to use for x, y, width, and height.
just, hjust, vjust

The justification of the tile relative to its location.

pattern_hex 53

group A logical indicating whether the pattern is relative to the bounding box of the
grob or whether it is relative to individual shapes within the grob. Ignored if R
is less than version 4.2.

Value

A grid::pattern() fill object.

Examples

if (guess_has_R4.1_features("patterns") &&
require("grid", quietly = TRUE)) {

grid.newpage()
stripe_fill <- patternFill("stripe", fill = c("red", "blue"))
grid.circle(gp = gpar(fill = stripe_fill))

}

if (guess_has_R4.1_features("patterns") &&
require("ggplot2", quietly = TRUE) &&
(getRversion() >= "4.2")) {

grid.newpage()
weave_fill <- patternFill("weave", fill = "red", fill2 = "blue",

colour = "transparent")
hex_fill <- patternFill("polygon_tiling", type = "hexagonal",

fill = c("black", "white", "grey"),
colour = "transparent")

df <- data.frame(trt = c("a", "b"), outcome = c(1.9, 3.2))
gg <- ggplot(df, aes(trt, outcome)) +
geom_col(fill = list(weave_fill, hex_fill))

plot(gg)
}

pattern_hex Hex pattern matrix

Description

pattern_hex() returns an integer matrix indicating where each color (or other graphical element)
should be drawn on a (horizontal) hex grid for a specified hex pattern type and subtype. names_hex
lists the currently supported hex types.

Usage

pattern_hex(type = "hex", subtype = NULL, nrow = 5L, ncol = 5L)

names_hex

54 pattern_hex

Arguments

type Currently just supports "hex".

subtype An integer indicating number of colors (or other graphical elements).

nrow Number of rows (height).

ncol Number of columns (width).

Format

An object of class character of length 5.

Details

"hex" Attempts to use a uniform coloring if it exists. For subtype 1L, 2L, and 3L we use the "hex1"
pattern. For subtype 4L we use the "hex2" pattern. For subtype 7L we use the "hex3" pattern.
Else a uniform coloring does not exist and we use the "hex_skew" pattern.

"hex1" Provides the 1-uniform colorings of a hexagonal tiling. Only exists for subtype 1L, 2L, or
3L.

"hex2" Provides the 2-uniform colorings of a hexagonal tiling. Only exists for subtype 2L or 4L.

"hex3" Provides the 3-uniform colorings of a hexagonal tiling. Only exists for subtype 2L or 7L.

"hex_skew" For the "hex_skew" type we cycle through subtype elements on the horizontal line
and "main" diagonal line. For some subtype numbers this may lead to noticeable color repeats
on the "skew" diagonal line. If subtype is strictly greater than 2L then a hexagon should never
touch another hexagon of the same color.

Value

A matrix of integer values indicating where the each color or other graphical elements should be
drawn on a horizontal hex grid (i.e. hexagons are assumed to be pointy side up). Indices [1,1]
of the matrix corresponds to the bottom-left of the grid while indices [1,ncol] corresponds to
the bottom-right of the grid. The even rows are assumed to be on the left of the ones on the odd
rows (for those in the same column in the matrix). This matrix has a "pattern_hex" subclass which
supports a special print() method.

See Also

grid.pattern_regular_polygon() for drawing to a graphics device hexagons, triangles, circles,
etc. in hexagon patterns. The tiling vignette features several examples of regular polygon tiling us-
ing this both the "hex" and "hex_circle" types vignette("tiling", package = "gridpattern").
For more information on uniform colorings of a hexagonal tiling see https://en.wikipedia.
org/wiki/Hexagonal_tiling#Uniform_colorings.

Examples

supported hex names
print(names_hex)

1-uniform 3-color

https://en.wikipedia.org/wiki/Hexagonal_tiling#Uniform_colorings
https://en.wikipedia.org/wiki/Hexagonal_tiling#Uniform_colorings

pattern_square 55

hex_3color <- pattern_hex("hex1", 3L, nrow = 7L, ncol = 9L)
print(hex_3color)

2-uniform 4-color
hex_4color <- pattern_hex("hex2", 4L, nrow = 7L, ncol = 9L)
print(hex_4color)

pattern_square Square pattern matrix

Description

pattern_square() returns an integer matrix indicating where each color (or other graphical el-
ement) should be drawn on a rectangular grid for a specified square pattern type and subtype.
names_square lists the currently supported square types (excluding those in names_weave).

Usage

pattern_square(type = "diagonal", subtype = NULL, nrow = 5L, ncol = 5L)

names_square

Arguments

type Either "diagonal" (default), "diagonal_skew", "horizontal", "vertical", or any
type in names_weave. See Details.

subtype See Details. For "diagonal", "diagonal_skew", "horizontal", or "vertical" an
integer of the desired number of colors (or other graphical elements).

nrow Number of rows (height).

ncol Number of columns (width).

Format

An object of class character of length 6.

Details

"horizontal", "vertical" "horizontal" and "vertical" simply cycle through the colors either hori-
zontally or vertically. Use subtype to indicate the (integer) number of colors (or other graph-
ical elements). "horizontal" will produce horizontal stripes of color whereas "vertical" will
produce vertical stripes.

"diagonal", "diagonal_skew" "diagonal" and "diagonal_skew" simply cycle through the colors
both horizontally and vertically. Use subtype to indicate the (integer) number of colors (or
other graphical elements). If two colors are requested this provides the standard two-color
checkerboard pattern. If there are more than three colors than "diagonal" will have colored
diagonals going from top left to bottom right while "diagonal_skew" will have them going
form bottom left to top right.

56 pattern_square

"square" "square" attempts a uniform coloring using "square_tiling" before falling falling back on
"diagonal". If subtype is 1L, 2L, 3L, or 4L uses "square_tiling" else uses "diagonal".

"square_tiling" "square_tiling" supports uniform coloring for (non-staggered) square tilings. Use
subtype to either indicate the (integer) number of colors or a string with four integers such
as "1231" (will fill in a 2x2 matrix by row which will then be tiled). Supports up to a max of
four colors.

any pattern from names_weave We simply convert the logical matrix returned by pattern_weave()
into an integer matrix by having any TRUE set to 1L and FALSE set to 2L. Hence the various
weave patterns only support (up to) two-color patterns. See pattern_weave() for more de-
tails about supported type and subtype.

Value

A matrix of integer values indicating where the each color (or other graphical element) should
be drawn on a rectangular grid. Indices [1,1] of the matrix corresponds to the bottom-left of
the grid while indices [1,ncol] corresponds to the bottom-right of the grid. This matrix has a
"pattern_square" subclass which supports a special print() method.

See Also

grid.pattern_regular_polygon() for drawing to a graphics device polygons in multiple color/size/shape
patterns. pattern_weave() for more information on "weave" patterns.

Examples

supported square names
print(names_square)

(main) diagonal has colors going from top left to bottom right
diagonal <- pattern_square("diagonal", 4L, nrow = 7L, ncol = 9L)
print(diagonal)

skew diagonal has colors going from bottom left to top right
skew <- pattern_square("diagonal_skew", 4L, nrow = 7L, ncol = 9L)
print(skew)

horizontal <- pattern_square("horizontal", 4L, nrow = 8L, ncol = 8L)
print(horizontal)

vertical <- pattern_square("vertical", 4L, nrow = 8L, ncol = 8L)
print(vertical)

uniform coloring using 4 colors
color4 <- pattern_square("square_tiling", 4L, nrow = 7L, ncol = 9L)
print(color4)

uniform coloring using 3 colors
color3 <- pattern_square("square_tiling", 3L, nrow = 7L, ncol = 9L)
print(color3)

also supports the various 'weave' patterns

pattern_weave 57

zigzag <- pattern_square("twill_zigzag", nrow = 15L, ncol = 9L)
print(zigzag)

pattern_weave Weave pattern matrix

Description

pattern_weave() returns a logical matrix indicating where the warp lines should be "up" for a
specified weave pattern type and subtype. names_weave is a character vector listing supported
weave pattern types.

Usage

pattern_weave(type = "plain", subtype = NULL, nrow = 5L, ncol = 5L)

names_weave

Arguments

type Type of weave. See Details.

subtype Subtype of weave. See Details.

nrow Number of rows (length of warp).

ncol Number of columns (length of weft).

Format

An object of class character of length 10.

Details

Here is a list of the various weave types supported:

basket A simple criss-cross pattern using two threads at a time. Same as the "matt_irregular"
weave but with a default subtype of 2L.

matt A simple criss-cross pattern using 3 (or more) threads at a time. Same as the "matt_irregular"
weave but with a default subtype of 3L.

matt_irregular A generalization of the "plain" weave. A character subtype "U/D(L+R)" is a
standard matt weave specification: U indicates number warp up, D indicates number warp
down, L indicates number of warp up in repeat, and R indicates number of warp down in
repeat. An integer subtype N will be interpreted as a "N/N(N+N)" irregular matt weave. A
character subtype "U/D" will be interpreted as a "U/D(U+D)" irregular matt weave. Has a
default subtype of "3/2(4+2)".

plain A simple criss-cross pattern. Same as the "matt_irregular" weave but with a default subtype
of 1L.

58 pattern_weave

rib_warp A plain weave variation that emphasizes vertical lines. An integer subtype N will be
interpreted as a "matt_irregular" "N/N(1+1)" weave. A character subtype "U/D" will be
interpreted as a "matt_irregular" "U/D(1+1)" weave. Default subtype of 2L.

satin A "regular" satin weave is a special type of the elongated twill weave with a move number
carefully chosen so no twill line is distinguishable. Same as the "twill_elongated" weave but
with a default subtype of 5L.

twill A simple diagonal pattern. Same as the "twill_elongated" weave but with a default subtype
of "2/1".

twill_elongated A generalization of the "twill" weave. A character subtype "U/D(M)" is a stan-
dard twill weave specification: U indicates number warp up, D indicates number warp down,
and M indicates the "move" number. A character subtype "U/D" will be interpreted as a
"U/D(1)" elongated twill weave. An integer subtype N will provide a "{N-1}/1(1)" elon-
gated twill weave if N is less than 5, 6, or greater than 14 otherwise it will provide a "{N-1}/1(M)"
weave where M is the largest possible regular "satin" move number. Default subtype of
"4/3(2)".

twill_herringbone Adds a (vertical) "herringbone" effect to the specified "twill_elongated" weave.
Default subtype of "4/3(2)".

twill_zigzag Adds a (vertical) "zig-zag" effect to the specified "twill_elongated" weave. Default
subtype of "4/3(2)".

For both "matt" and "twill" weaves the U/D part of the subtype can be further extended to U1/D1*U2/D2,
U1/D1*U2/D2*U3/D3, etc. For the "matt" weave the "(L+R)" part of the subtype can be further ex-
tended to (L1+R1+L2+R2), (L1+R1+L2+R2+L3+R3), etc.

Value

A matrix of logical values indicating where the "warp" is "up" (if TRUE) or "down" (if FALSE).
Indices [1,1] of the matrix corresponds to the bottom-left of the weave while indices [1,ncol]
corresponds to the bottom-right of the weave. This matrix has a "pattern_weave" subclass which
supports a special print() method.

See Also

grid.pattern_weave() for drawing weaves onto a graphics device. See https://textilestudycenter.
com/derivatives-of-plain-weave/ for further information on the "matt" family of weaves,
https://textilelearner.net/twill-weave-features-classification-derivatives-and-uses/
for further information on the "twill" family of weaves, and https://texwiz101.blogspot.com/
2012/03/features-and-classification-of-satin.html for further information on "satin" weaves.

Examples

supported weave names
print(names_weave)

plain <- pattern_weave("plain", nrow = 7, ncol = 9)
print(plain)

matt_irregular <- pattern_weave("matt_irregular", nrow = 9, ncol = 11)

https://textilestudycenter.com/derivatives-of-plain-weave/
https://textilestudycenter.com/derivatives-of-plain-weave/
https://textilelearner.net/twill-weave-features-classification-derivatives-and-uses/
https://texwiz101.blogspot.com/2012/03/features-and-classification-of-satin.html
https://texwiz101.blogspot.com/2012/03/features-and-classification-of-satin.html

reset_image_cache 59

print(matt_irregular)

satin <- pattern_weave("satin", nrow = 9, ncol = 11)
print(satin)

twill <- pattern_weave("twill", nrow = 9, ncol = 11)
print(twill)

twill_zigzag <- pattern_weave("twill_zigzag", nrow = 18, ncol = 11)
print(twill_zigzag)

reset_image_cache Reset ’gridpattern’ image cache

Description

grid.pattern_image() and grid.pattern_placeholder() store images in a cache (so we won’t
download image URLs over and over). reset_image_cache() resets this cache.

Usage

reset_image_cache()

star_scale Compute regular star polygon scale or angles

Description

star_scale() computes star scale value given an internal or external angle. star_angle() com-
putes star angle (internal or external) given a scale value.

Usage

star_scale(n_vertices, angle, external = FALSE)

star_angle(n_vertices, scale, external = FALSE)

Arguments

n_vertices Number of exterior vertices.

angle Angle in degrees.

external If TRUE angle should be considered an external angle.

scale Scale from 0 to 1.

60 update_alpha

Details

grid.pattern_regular_polygon() parameterizes regular star polygons with the number of its
external vertices and a scale that equals the fraction of the radius of the circle that circumscribes
the interior vertices divided by the radius of the circle that circumscribes the exterior vertices. These
helper functions help convert between that parameterization and either the internal or external angle
of the regular star polygon.

Value

star_scale() returns a numeric value between 0 and 1 intended for use as the scale argument in
grid.pattern_regular_polygon(). star_angle() returns a numeric value between 0 and 360
(degrees).

Examples

|8/3| star has internal angle 45 degrees and external angle 90 degrees
scale <- star_scale(8, 45)
scale2 <- star_scale(8, 90, external = TRUE)
all.equal(scale, scale2)
star_angle(8, scale)
star_angle(8, scale, external = TRUE)

grid.pattern_regular_polygon(shape = "star8", scale = scale, angle = 0,
spacing = 0.2, density = 0.8)

update_alpha Update colour and/or pattern transparency

Description

update_alpha() modifies the transparency of colours and/or patterns.

Usage

update_alpha(fill, alpha)

Arguments

fill A fill colour given as a character or integer vector, or as a (list of) <GridPattern>
object(s) and/or colour(s).

alpha A transparency value between 0 (transparent) and 1 (opaque), parallel to fill.

update_alpha 61

Details

• This is a fork of pattern utilities mainly added to {ggplot2} by Teun van den Brand.

• update_alpha() does not depend on {ggplot2} or {scales}.

• Like ggplot2::fill_alpha() but unlike scales::alpha() it also attempts to set the trans-
parency of <GridPattern> objects.

• Unlike ggplot2::fill_alpha() it will work on a list of length one containing a vector of
color strings.

Value

A character vector of colours or list of <GridPattern> objects.

Usage in other packages

To avoid taking a dependency on gridpattern you may copy the source of update_alpha() into
your own package under the permissive MIT license. Either use usethis::use_standalone("trevorld/gridpattern",
"standalone-update_alpha.R") or copy the file update_alpha.R into your R directory and add
grDevices, grid, and rlang to the Imports of your DESCRIPTION file.

Examples

Typical color input
update_alpha("red", 0.5)

Pattern input
if (getRversion() >= "4.2" && requireNamespace("grid", quietly = TRUE)) {

update_alpha(list(grid::linearGradient()), 0.5)
}

Index

∗ datasets
grid.pattern, 7
grid.pattern_magick, 23
grid.pattern_placeholder, 29
grid.pattern_polygon_tiling, 32
pattern_hex, 53
pattern_square, 55
pattern_weave, 57

alphaMaskGrob, 4
ambient::noise_cubic(), 12
ambient::noise_perlin(), 12
ambient::noise_simplex(), 12
ambient::noise_value(), 12
ambient::noise_white(), 12
ambient::noise_worley(), 12

base::options(), 3

clippingPathGrob, 5

ggplot2::fill_alpha(), 61
gpar, 4, 6, 8, 12, 13, 16, 18, 19, 21, 22, 24, 26,

28, 30, 32, 33, 37, 40, 43, 45, 47, 49
graphics::points(), 27
grDevices::png(), 4, 6, 40, 45
grid.pattern, 7
grid.pattern_ambient, 10
grid.pattern_ambient(), 8, 32
grid.pattern_aRtsy, 13
grid.pattern_aRtsy(), 8
grid.pattern_circle, 14
grid.pattern_circle(), 8, 38
grid.pattern_crosshatch, 16
grid.pattern_crosshatch(), 8
grid.pattern_fill, 18
grid.pattern_gradient, 19
grid.pattern_gradient(), 8
grid.pattern_image, 21
grid.pattern_image(), 8, 30, 59

grid.pattern_magick, 23
grid.pattern_magick(), 8
grid.pattern_none, 25
grid.pattern_pch, 26
grid.pattern_pch(), 8
grid.pattern_placeholder, 29
grid.pattern_placeholder(), 8, 23, 59
grid.pattern_plasma, 31
grid.pattern_plasma(), 8, 12
grid.pattern_polygon_tiling, 32
grid.pattern_polygon_tiling(), 8
grid.pattern_regular_polygon, 36
grid.pattern_regular_polygon(), 8, 16,

28, 35, 54, 56, 60
grid.pattern_rose, 39
grid.pattern_rose(), 9
grid.pattern_stripe, 41
grid.pattern_stripe(), 9, 18, 47
grid.pattern_text, 43
grid.pattern_text(), 9
grid.pattern_wave, 46
grid.pattern_wave(), 9
grid.pattern_weave, 48
grid.pattern_weave(), 9, 18, 58
grid::gpar(), 45
grid::grid.null(), 8, 26
grid::grid.polygon(), 19
grid::pattern(), 15, 17, 19, 27, 33, 37, 40,

42, 47, 52, 53
grid::textGrob(), 44
grid::unit(), 15, 17, 27, 33, 37, 40, 42, 44,

47, 49, 52
gridpattern (gridpattern-package), 2
gridpattern-package, 2
guess_has_R4.1_features, 50

magick::magick_set_seed(), 32
mean_col, 51

names_aRtsy (grid.pattern_aRtsy), 13

62

INDEX 63

names_hex (pattern_hex), 53
names_magick (grid.pattern_magick), 23
names_magick_intensity

(grid.pattern_magick), 23
names_magick_stripe

(grid.pattern_magick), 23
names_pattern (grid.pattern), 7
names_placeholder

(grid.pattern_placeholder), 29
names_polygon_tiling

(grid.pattern_polygon_tiling),
32

names_square (pattern_square), 55
names_weave (pattern_weave), 57

pattern_hex, 53
pattern_hex(), 15, 28, 37, 40, 44
pattern_square, 55
pattern_square(), 15, 28, 37, 40, 44
pattern_weave, 57
pattern_weave(), 15, 28, 37, 40, 44, 49, 56
patternFill, 52
patternGrob (grid.pattern), 7
patternGrob(), 52
png::readPNG(), 4, 6, 40, 45

ragg::agg_capture(), 4, 6, 40, 45
ragg::agg_png(), 4, 6, 40, 45
reset_image_cache, 59
reset_image_cache(), 23, 30

scales::alpha(), 61
star_angle (star_scale), 59
star_scale, 59

update_alpha, 60

	gridpattern-package
	alphaMaskGrob
	clippingPathGrob
	grid.pattern
	grid.pattern_ambient
	grid.pattern_aRtsy
	grid.pattern_circle
	grid.pattern_crosshatch
	grid.pattern_fill
	grid.pattern_gradient
	grid.pattern_image
	grid.pattern_magick
	grid.pattern_none
	grid.pattern_pch
	grid.pattern_placeholder
	grid.pattern_plasma
	grid.pattern_polygon_tiling
	grid.pattern_regular_polygon
	grid.pattern_rose
	grid.pattern_stripe
	grid.pattern_text
	grid.pattern_wave
	grid.pattern_weave
	guess_has_R4.1_features
	mean_col
	patternFill
	pattern_hex
	pattern_square
	pattern_weave
	reset_image_cache
	star_scale
	update_alpha
	Index

