Type: | Package |
Title: | Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Grouping Structure |
Version: | 0.2.1 |
Description: | A Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation. Jonathan Boss, Jyotishka Datta, Xin Wang, Sung Kyun Park, Jian Kang, Bhramar Mukherjee (2021) <doi:10.48550/arXiv.2102.10670>. |
Maintainer: | Michael Kleinsasser <mkleinsa@umich.edu> |
License: | GPL-2 |
Encoding: | UTF-8 |
LazyData: | true |
Biarch: | true |
Depends: | R (≥ 3.5.0) |
LinkingTo: | Rcpp, RcppArmadillo, BH |
Imports: | Rcpp |
URL: | https://github.com/umich-cphds/gigg |
BugReports: | https://github.com/umich-cphds/gigg/issues |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | yes |
Packaged: | 2021-03-05 23:21:05 UTC; mkleinsa |
Author: | Jon Boss [aut], Bhramar Mukherjee [aut], Michael Kleinsasser [cre] |
Repository: | CRAN |
Date/Publication: | 2021-03-09 09:00:20 UTC |
Solve function with Cholesky decomposition.
Description
An Rcpp function that solves M*U = V.
Usage
chol_solve(M, V)
Arguments
M |
A (M x M) symmetric positive definite matrix. |
V |
A (M x 1) vector. |
Value
The solution to M*U = V.
Example data set
Description
Contains a list with data and parameters to run the package examples.
Please see ?gigg_fixed
and ?grouped_igg_mmle
pages for use.
Usage
concentrated
Format
An object of class list
of length 15.
Examples
concentrated
names(concentrated)
Inverse digamma function.
Description
Evaluate the inverse digamma function.
Usage
digamma_inv(y, precision = 1e-08)
Arguments
y |
value to evaluate the inverse digamma function at. |
precision |
default = 1e-08. |
Value
Numeric inverse digamma value.
Example data set
Description
Contains a list with data and parameters to run the package examples.
Please see ?gigg_fixed
and ?grouped_igg_mmle
pages for use.
Usage
distributed
Format
An object of class list
of length 15.
Examples
distributed
names(distributed)
GIGG regression
Description
Perform GIGG (Group Inverse-Gamma Gamma) regression. This package implements a Gibbs sampler corresponding to a Group Inverse-Gamma Gamma (GIGG) regression model with adjustment covariates. Hyperparameters in the GIGG prior specification can either be fixed by the user or can be estimated via Marginal Maximum Likelihood Estimation.
Usage
gigg(
X,
C,
Y,
method = "mmle",
grp_idx,
alpha_inits = rep(0, ncol(C)),
beta_inits = rep(0, ncol(X)),
a = rep(0.5, length(unique(grp_idx))),
b = rep(0.5, length(unique(grp_idx))),
sigma_sq_init = 1,
tau_sq_init = 1,
n_burn_in = 500,
n_samples = 1000,
n_thin = 1,
verbose = TRUE,
btrick = FALSE,
stable_solve = TRUE
)
Arguments
X |
A (n x p) matrix of covariates that to apply GIGG shrinkage on. |
C |
A (n x k) matrix of covariates that to apply no shrinkage on (typically intercept + adjustment covariates). |
Y |
A length n vector of responses. |
method |
Either |
grp_idx |
A length p integer vector indicating which group of the G groups the p covariates in X belong to.
The |
alpha_inits |
A length k vector containing initial values for the regression coefficients corresponding to C. |
beta_inits |
A length p vector containing initial values for the regression coefficients corresponding to X. |
a |
A length G vector of shape parameters for the prior on the group shrinkage parameters.
The |
b |
A length G vector of shape parameters for the prior on the individual shrinkage parameters. If |
sigma_sq_init |
Initial value for the residual error variance (double). |
tau_sq_init |
Initial value for the global shrinkage parameter (double). |
n_burn_in |
The number of burn-in samples (integer). |
n_samples |
The number of posterior draws (integer). |
n_thin |
The thinning interval (integer). |
verbose |
Boolean value which indicates whether or not to print the progress of the Gibbs sampler. |
btrick |
Boolean value which indicates whether or not to use the computational trick in Bhattacharya et al. (2016). Only recommended if number of covariates is much larger than the number of observations. |
stable_solve |
Boolean value which indicates whether or not to use Cholesky decomposition during the update of the regression coefficients corresponding to X. In our experience, |
Value
A list containing
"draws" - A list containing the posterior draws of
(1) the regression coefficients (alphas and betas)
(2) the individual shrinkage parameters (lambda_sqs)
(3) the group shrinkage parameters (gamma_sqs)
(4) the global shrinkage parameter (tau_sqs) and
(5) the residual error variance (sigma_sqs).
The list also contains details regarding the dataset (X, C, Y, grp_idx) and Gibbs sampler details (n_burn_in, n_samples, and n_thin)."beta.hat" - Posterior mean of betas
"beta.lcl.95" - 95% credible interval lower bound of betas
"beta.ucl.95" - 95% credible interval upper bound of betas
"alpha.hat" - Posterior mean of alpha
"alpha.lcl.95" - 95% credible interval lower bound of alphas
"alpha.ucl.95" - 95% credible interval upper bound of alphas
"sigma_sq.hat" - Posterior mean of sigma squared
"sigma_sq.lcl.95" - 95% credible interval lower bound of sigma sq.
"sigma_sq.ucl.95" - 95% credible interval upper bound of sigma sq.
References
Boss, J., Datta, J., Wang, X., Park, S.K., Kang, J., & Mukherjee, B. (2021). Group Inverse-Gamma Gamma Shrinkage for Sparse Regression with Block-Correlated Predictors. arXiv
Examples
X = concentrated$X
C = concentrated$C
Y = as.vector(concentrated$Y)
grp_idx = concentrated$grps
alpha_inits = concentrated$alpha
beta_inits = concentrated$beta
gf = gigg(X, C, Y, method = "fixed", grp_idx, alpha_inits, beta_inits,
n_burn_in = 200, n_samples = 500, n_thin = 1,
verbose = TRUE, btrick = FALSE, stable_solve = FALSE)
gf_mmle = gigg(X, C, Y, method = "mmle", grp_idx, alpha_inits, beta_inits,
n_burn_in = 200, n_samples = 500, n_thin = 1,
verbose = TRUE, btrick = FALSE,
stable_solve = FALSE)
Gibbs sampler for GIGG regression with fixed hyperparameters.
Description
An Rcpp function that implements a Gibbs sampler for GIGG regression with fixed hyperparameters.
Usage
gigg_fixed_gibbs_sampler(
X,
C,
Y,
grp_idx,
grp_size,
grp_size_cs,
alpha_inits,
beta_inits,
lambda_sq_inits,
gamma_sq_inits,
eta_inits,
p,
q,
tau_sq_init = 1,
sigma_sq_init = 1,
nu_init = 1,
n_burn_in = 500L,
n_samples = 1000L,
n_thin = 1L,
stable_const = 1e-07,
verbose = TRUE,
btrick = FALSE,
stable_solve = FALSE
)
Arguments
X |
A (n x M) matrix of covariates that we want to apply GIGG shrinkage on. |
C |
A (n x K) matrix of covariates that we want to apply no shrinkage on (typically intercept + adjustment covariates). |
Y |
A (n x 1) column vector of responses. |
grp_idx |
A (1 x M) row vector indicating which group of the J groups the M covariates in X belong to. |
grp_size |
A (1 x J) row vector indicating the number of covariates in each group. |
grp_size_cs |
A (1 x J) row vector that is the cumulative sum of grp_size (indicating the indicies where each group ends). |
alpha_inits |
A (K x 1) column vector containing initial values for the regression coefficients corresponding to C. |
beta_inits |
A (M x 1) column vector containing initial values for the regression coefficients corresponding to X. |
lambda_sq_inits |
A (M x 1) column vector containing initial values for the local shrinkage parameters. |
gamma_sq_inits |
A (J x 1) column vector containing initial values for the group shrinkage parameters. |
eta_inits |
A (J x 1) column vector containing initial values for the mixing parameters. |
p |
A (J x 1) column vector of shape parameter for the prior on the group shrinkage parameters. |
q |
A (J x 1) column vector of shape parameter for the prior on the individual shrinkage parameters. |
tau_sq_init |
Initial value for the global shrinkage parameter (double). |
sigma_sq_init |
Initial value for the residual variance (double). |
nu_init |
Initial value for the augmentation variable (double). |
n_burn_in |
The number of burn-in samples (integer). |
n_samples |
The number of posterior draws (integer). |
n_thin |
The thinning interval (integer). |
stable_const |
Parameter that controls numerical stability of the algorithm (double). |
verbose |
Boolean value which indicates whether or not to print the progress of the Gibbs sampler. |
btrick |
Boolean value which indicates whether or not to use the computational trick in Bhattacharya et al. (2016). Only recommended if number of covariates is much larger than the number of observations. |
stable_solve |
default to FALSE |
Value
A list containing the posterior draws of (1) the regression coefficients (alphas and betas) (2) the individual shrinkage parameters (lambda_sqs) (3) the group shrinkage parameters (gamma_sqs) (4) the global shrinkage parameter (tau_sqs) and (5) the residual error variance (sigma_sqs). The list also contains details regarding the dataset (X, C, Y, grp_idx) and Gibbs sampler details (n_burn_in, n_samples, and n_thin).
Gibbs sampler for GIGG regression with hyperparameters estimated via MMLE.
Description
An Rcpp function that implements a Gibbs sampler for GIGG regression with hyperparameters estimated via MMLE.
Usage
gigg_mmle_gibbs_sampler(
X,
C,
Y,
grp_idx,
grp_size,
grp_size_cs,
alpha_inits,
beta_inits,
lambda_sq_inits,
gamma_sq_inits,
eta_inits,
p_inits,
q_inits,
tau_sq_init = 1,
sigma_sq_init = 1,
nu_init = 1,
n_burn_in = 500L,
n_samples = 1000L,
n_thin = 1L,
stable_const = 1e-07,
verbose = TRUE,
btrick = FALSE,
stable_solve = FALSE
)
Arguments
X |
A (n x M) matrix of covariates that we want to apply GIGG shrinkage on. |
C |
A (n x K) matrix of covariates that we want to apply no shrinkage on (typically intercept + adjustment covariates). |
Y |
A (n x 1) column vector of responses. |
grp_idx |
A (1 x M) row vector indicating which group of the J groups the M covariates in X belong to. |
grp_size |
A (1 x J) row vector indicating the number of covariates in each group. |
grp_size_cs |
A (1 x J) row vector that is the cumulative sum of grp_size (indicating the indicies where each group ends). |
alpha_inits |
A (K x 1) column vector containing initial values for the regression coefficients corresponding to C. |
beta_inits |
A (M x 1) column vector containing initial values for the regression coefficients corresponding to X. |
lambda_sq_inits |
A (M x 1) column vector containing initial values for the local shrinkage parameters. |
gamma_sq_inits |
A (J x 1) column vector containing initial values for the group shrinkage parameters. |
eta_inits |
A (J x 1) column vector containing initial values for the mixing parameters. |
p_inits |
A (J x 1) column vector of initial shape parameter for the prior on the group shrinkage parameters. |
q_inits |
A (J x 1) column vector of inital shape parameter for the prior on the individual shrinkage parameters. |
tau_sq_init |
Initial value for the global shrinkage parameter (double). |
sigma_sq_init |
Initial value for the residual variance (double). |
nu_init |
Initial value for the augmentation variable (double). |
n_burn_in |
The number of burn-in samples (integer). |
n_samples |
The number of posterior draws (integer). |
n_thin |
The thinning interval (integer). |
stable_const |
Parameter that controls numerical stability of the algorithm (double). |
verbose |
Boolean value which indicates whether or not to print the progress of the Gibbs sampler. |
btrick |
Boolean value which indicates whether or not to use the computational trick in Bhattacharya et al. (2016). Only recommended if number of covariates is much larger than the number of observations. |
stable_solve |
default to FALSE |
Value
A list containing the posterior draws of (1) the regression coefficients (alphas and betas) (2) the individual shrinkage parameters (lambda_sqs) (3) the group shrinkage parameters (gamma_sqs) (4) the global shrinkage parameter (tau_sqs) and (5) the residual error variance (sigma_sqs). The list also contains details regarding the dataset (X, C, Y, grp_idx) and Gibbs sampler details (n_burn_in, n_samples, and n_thin).
Iterative one rank update for matrix inverse.
Description
An Rcpp function that computes the matrix inverse of XtX + D_pos.
Usage
quick_solve(XtX_inv, D_pos, vec_draw)
Arguments
XtX_inv |
A precomputed (M x M) matrix inverse. |
D_pos |
A (M x 1) vector of the square root of the diagonal entries in the D matrix. |
vec_draw |
A (M x 1) vector drawn from a multivariate normal distribution. |
Value
The solution to (XtX + D)*U = vec_draw.
Randomly generate a generalized inverse gaussian random variable.
Description
Randomly generates one draw from a generalized inverse gaussian distribution.
Usage
rgig_cpp(chi, psi, lambda)
Arguments
chi |
A positive double. |
psi |
A positive double. |
lambda |
A non-negative double. |
Value
A random draw from the generalized inverse gaussian distribution with parameters chi, psi, and lambda (double).