Type: | Package |
Title: | Modified Generalized Estimating Equations for Small-Sample Data |
Version: | 0.1.2 |
Maintainer: | Ryota Ishii <r.ishii0808@gmail.com> |
Description: | Analyze small-sample clustered or longitudinal data using modified generalized estimating equations with bias-adjusted covariance estimator. The package provides any combination of three modified generalized estimating equations and 11 bias-adjusted covariance estimators. |
Depends: | R (≥ 4.5.0) |
Imports: | MASS (≥ 7.3-45) |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Suggests: | testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-06-18 04:19:28 UTC; rishii |
Author: | Ryota Ishii [aut, cre], Kazushi Maruo [ctb], Masahiko Gosho [ctb] |
Repository: | CRAN |
Date/Publication: | 2025-06-19 07:40:02 UTC |
Modified Generalized Estimating Equations for Small-Sample Data
Description
geess
is an extension of geessbin
package (Ishii et al., 2024).
geess
analyzes small-sample clustered or longitudinal data using
modified generalized estimating equations (GEE) with bias-adjusted covariance
estimator. This function provides any combination of three GEE methods
(conventional and two modified GEE methods) and 12 covariance estimators
(unadjusted and 11 bias-adjusted estimators).
Usage
geess(
formula,
family = gaussian,
data = parent.frame(),
id = NULL,
corstr = "independence",
repeated = NULL,
beta.method = "GEE",
SE.method = "SA",
b = NULL,
maxitr = 50,
tol = 1e-05,
scale.fix = FALSE,
conf.level = 0.95
)
Arguments
formula |
Object of class formula: symbolic description of model to be
fitted (see documentation of |
family |
Description of the error distribution and link function to be
used in the model. The |
data |
Data frame. |
id |
Vector that identifies the subjects or clusters ( |
corstr |
Working correlation structure. The following are permitted:
" |
repeated |
Vector that identifies repeatedly measured variable within
each subject or cluster. If |
beta.method |
Method for estimating regression parameters (see Details
section). The following are permitted: " |
SE.method |
Method for estimating standard errors (see Details section).
The following are permitted: " |
b |
Numeric vector specifying initial values of regression coefficients.
If |
maxitr |
Maximum number of iterations (50 by default). |
tol |
Tolerance used in fitting algorithm ( |
scale.fix |
Logical variable; if |
conf.level |
Numeric value of confidence level for confidence intervals (0.95 by default). |
Details
Details of beta.method
are as follows:
"GEE" is the conventional GEE method (Liang and Zeger, 1986)
"BCGEE" is the bias-corrected GEE method (Paul and Zhang, 2014; Lunardon and Scharfstein, 2017)
"PGEE" is the bias reduction of the GEE method obtained by adding a Firth-type penalty term to the estimating equation (Mondol and Rahman, 2019)
Details of SE.method
are as follows:
"SA" is the unadjusted sandwich variance estimator (Liang and Zeger, 1986)
"MK" is the MacKinnon and White estimator (MacKinnon and White, 1985)
"KC" is the Kauermann and Carroll estimator (Kauermann and Carroll, 2001)
"MD" is the Mancl and DeRouen estimator (Mancl and DeRouen, 2001)
"FG" is the Fay and Graubard estimator (Fay and Graubard, 2001)
"PA" is the Pan estimator (Pan, 2001)
"GS" is the Gosho et al. estimator (Gosho et al., 2014)
"MB" is the Morel et al. estimator (Morel et al., 2003)
"WL" is the Wang and Long estimator (Wang and Long, 2011)
"WB" is the Westgate and Burchett estimator (Westgate and Burchett, 2016)
"FW" is the Ford and Wastgate estimator (Ford and Wastgate, 2017)
"FZ" is the Fan et al. estimator (Fan et al., 2013)
Descriptions and performances of some of the above methods in the case of binary outcomes can be found in Gosho et al. (2023).
Value
The object of class "geess
" representing the results of
modified generalized estimating equations with bias-adjusted covariance
estimators. Generic function summary
provides details of the results.
References
Fan, C., and Zhang, D., and Zhang, C. H. (2013). A comparison of bias-corrected covariance estimators for generalized estimating equations. Journal of Biopharmaceutical Statistics, 23, 1172–1187, doi:10.1080/10543406.2013.813521.
Fay, M. P. and Graubard, B. I. (2001). Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics, 57, 1198–1206, doi:10.1111/j.0006-341X.2001.01198.x.
Ford, W. P. and Westgate, P. M. (2017). Improved standard error estimator for maintaining the validity of inference in cluster randomized trials with a small number of clusters. Biometrical Journal, 59, 478–495, doi:10.1002/bimj.201600182.
Gosho, M., Ishii, R., Noma, H., and Maruo, K. (2023). A comparison of bias-adjusted generalized estimating equations for sparse binary data in small-sample longitudinal studies. Statistics in Medicine, 42, 2711–2727, doi:10.1002/sim.9744.
Gosho, M., Sato, T., and Takeuchi, H. (2014). Robust covariance estimator for small-sample adjustment in the generalized estimating equations: A simulation study. Science Journal of Applied Mathematics and Statistics, 2, 20–25, doi:10.11648/j.sjams.20140201.13.
Ishii, R., Ohigashi, T., Maruo, K., and Gosho, M. (2024). geessbin: an R package for analyzing small-sample binary data using modified generalized estimating equations with bias-adjusted covariance estimators. BMC Medical Research Methodology, 24, 277, doi:10.1186/s12874-024-02368-2.
Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387–1396, doi:10.1198/016214501753382309.
Liang, K. and Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22, doi:10.1093/biomet/73.1.13.
Lunardon, N. and Scharfstein, D. (2017). Comment on ‘Small sample GEE estimation of regression parameters for longitudinal data’. Statistics in Medicine, 36, 3596–3600, doi:10.1002/sim.7366.
MacKinnon, J. G. and White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29, 305–325, doi:10.1016/0304-4076(85)90158-7.
Mancl, L. A. and DeRouen, T. A. (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics, 57, 126–134, doi:10.1111/j.0006-341X.2001.00126.x.
Mondol, M. H. and Rahman, M. S. (2019). Bias-reduced and separation-proof GEE with small or sparse longitudinal binary data. Statistics in Medicine, 38, 2544–2560, doi:10.1002/sim.8126.
Morel, J. G., Bokossa, M. C., and Neerchal, N. K. (2003). Small sample correlation for the variance of GEE estimators. Biometrical Journal, 45, 395–409, doi:10.1002/bimj.200390021.
Pan, W. (2001). On the robust variance estimator in generalised estimating equations. Biometrika, 88, 901–906, doi:10.1093/biomet/88.3.901.
Paul, S. and Zhang, X. (2014). Small sample GEE estimation of regression parameters for longitudinal data. Statistics in Medicine, 33, 3869–3881, doi:10.1002/sim.6198.
Wang, M. and Long, Q. (2011). Modified robust variance estimator for generalized estimating equations with improved small-sample performance. Statistics in Medicine, 30, 1278–1291, doi:10.1002/sim.4150.
Westgate, P. M. and Burchett, W. W. (2016). Improving power in small-sample longitudinal studies when using generalized estimating equations. Statistics in Medicine, 35, 3733–3744, doi:10.1002/sim.6967.
Examples
library(geess)
library(MASS)
# analysis of longitudinal count data usinBCg GEE method with Morel et al. covariance estimator
res <- geess(formula = y ~ trt + period + lbase + lage,
family = poisson, data = epil, id = subject,
repeated = period, corstr = "unstructured",
beta.method = "BCGEE", SE.method = "MB")
print(res)
# hypothesis tests for regression coefficients
summary(res)
Square root of nonsymmetric matrix
Description
sqrtmat
is used to calculate the square root of E_i - H_{ii}
,
which is an adjustment factor in Kauermann and Carroll-type method.
Usage
sqrtmat(M)
Arguments
M |
Square matrix whose square root is to be computed. |
Value
The square root of M
References
Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96, 1387–1396, doi:10.1198/016214501753382309.