Title: | Tracing Information Flow for Inter-Software Comparisons in Mass Spectrometry-Based Bottom-Up Proteomics |
Version: | 0.1.1 |
Description: | Useful functions to standardize software outputs from ProteomeDiscoverer, Spectronaut, DIA-NN and MaxQuant on precursor, modified peptide and proteingroup level and to trace software differences for identifications such as varying proteingroup denotations for common precursor. |
License: | MIT + file LICENSE |
Depends: | R (≥ 2.10) |
Imports: | comprehenr, dplyr, ggplot2, magrittr, stringr, tibble, tidyr |
Suggests: | data.table, kableExtra, knitr, rmarkdown, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
URL: | https://github.com/OKdll/flowTraceR |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | no |
Packaged: | 2025-04-29 14:10:38 UTC; Olive |
Author: | Oliver Kardell [aut, cre] |
Maintainer: | Oliver Kardell <Okdll@gmx.net> |
Repository: | CRAN |
Date/Publication: | 2025-04-29 14:20:05 UTC |
flowTraceR: a package for standardization of level information and tracking inter-software differences in bottom-up label-free proteomics
Description
Useful functions to standardize software outputs from ProteomeDiscoverer, Spectronaut, DIA-NN and MaxQuant on precursor, modified peptide and proteingroup level and to trace software differences for identifications such as varying proteingroup denotations for common precursor.
Author(s)
Maintainer: Oliver Kardell Okdll@gmx.net
See Also
Useful links:
Analysis of connected levels
Description
Analysis of the traceR_connected_pg_prec or traceR_connected_mod.pep_prec column
Usage
analyze_connected_levels(
input_df,
connected_levels = c("proteinGroup_precursor", "mod.peptides_precursor"),
count_level = c("upper", "lower"),
plot = TRUE,
plot_characteristic = c("absolute", "relative")
)
Arguments
input_df |
A tibble with flowTraceR´s connected level information e.g. traceR_connected_pg_prec. |
connected_levels |
Choose either |
count_level |
Counts appearances per possible connections. Choose either |
plot |
Logical value, default is TRUE. If |
plot_characteristic |
if |
Details
Shows the absolute and relative counts of possible connections - unique_unique/unique_common/common_unique/common_common of the respective column - as report or plot.
Value
This function returns a plot - absolute/relative counts - or a data frame.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(ggplot2)
library(tibble)
# DIA-NN example data
data <- tibble::tibble(
"traceR_connected_pg_prec" = c("common_common", "common_unique", "unique_common"),
"traceR_traced_proteinGroups" = c("common", "common", "unique"),
"traceR_traced_mod.peptides" = c("common", "unique", "common"),
"traceR_traced_precursor" = c("common", "unique", "common"),
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496"),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2", "EGIVEYPR2")
)
# Upper level - proteingroup level - how many proteingroups have a specific categorization
# Plot
analyze_connected_levels(input_df = data,
connected_levels = "proteinGroup_precursor",
count_level = "upper",
plot = TRUE,
plot_characteristic = "relative")
#Report
analyze_connected_levels(input_df = data,
connected_levels = "proteinGroup_precursor",
count_level = "upper",
plot = FALSE)
Analysis of unknown modifications
Description
Analysis of the traceR_precursor_unknownMods or traceR_mod.peptides_unknownMods column
Usage
analyze_unknown_mods(
input_df,
level = c("precursor, modified_peptides"),
plot = TRUE,
plot_characteristic = c("absolute", "relative")
)
Arguments
input_df |
A tibble with the traceR_precursor_unknownMods or traceR_mod.peptides_unknownMods column. |
level |
Choose either |
plot |
Logical value, default is TRUE. If |
plot_characteristic |
If |
Details
Shows the absolute and relative counts of TRUE/FALSE of the traceR_precursor_unknownMods or traceR_mod.peptides_unknownMods column - as data frame or plot. Duplicate traceR_mod.peptides entries or traceR_precursor entries are removed, respectively.
Value
This function returns a plot - absolute/relative counts - or a data frame.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(ggplot2)
library(tibble)
# Generate data
data <- tibble::tibble(
"traceR_mod.peptides" = c("AACLLPK",
"ALTDM(UniMod:35)PQM(UniMod:35)R",
"ALTDM(DummyModification)PQMK",
"ALTDM(UniMod:35)PQM(UniMod:35)R",
"ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE),
"traceR_precursor" = c("AACLLPK2",
"ALTDM(UniMod:35)PQM(UniMod:35)R2",
"ALTDM(DummyModification)PQMK3",
"ALTDM(UniMod:35)PQM(UniMod:35)R2",
"ALTDM(DummyModification)PQMK3"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, TRUE, FALSE, TRUE)
)
# Generate Report - precursor level
analyze_unknown_mods(
input_df = data,
level = "precursor",
plot = FALSE
)
# Generate relative Plot - peptide level
analyze_unknown_mods(
input_df = data,
level = "modified_peptides",
plot = TRUE,
plot_characteristic = "relative"
)
Connects traced levels
Description
Connects two levels after categorization in unique and common entries.
Usage
connect_traceR_levels(
input_df,
level = c("proteinGroups", "modified_peptides")
)
Arguments
input_df |
A tibble with flowTraceR´s traced level information e.g. traceR_traced_proteinGroups. |
level |
Choose between |
Details
Based on flowTraceR´s categorization in unique and common identifications two levels are connected. Possible connections are proteinGroup or modified peptide with precursor categorization.
Value
This function returns a tibble with one of the following columns depending on chosen level
:
traceR_connected_pg_prec - connection between proteinGroup categorization and precursor categorization.
traceR_connected_mod.pep_prec - connection between modified peptide categorization and precursor categorization.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(tidyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_traced_proteinGroups" = c("common", "common", "unique"),
"traceR_traced_mod.peptides" = c("common", "unique", "common"),
"traceR_traced_precursor" = c("common", "unique", "common"),
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK", "EGIVEYPR"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2", "EGIVEYPR2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
spectronaut <- tibble::tibble(
"traceR_traced_proteinGroups" = c("common", "common", "unique"),
"traceR_traced_mod.peptides" = c("common", "unique", "common"),
"traceR_traced_precursor" = c("common", "unique", "common"),
"traceR_proteinGroups" = c("P02768", "P02671", "Q02985"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "M(UniMod:35)KPVPDLVPGNFK", "EGIVEYPR"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "M(UniMod:35)KPVPDLVPGNFK2", "EGIVEYPR2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
# Connect Precursor and ProteinGroup level
diann_connected <- connect_traceR_levels(input_df = diann, level = "proteinGroups")
spectronaut_connected <- connect_traceR_levels(input_df = spectronaut, level = "proteinGroups")
Conversion of software specific levels
Description
Conversion of precursor, modified peptide and proteinGroup entries to standardized format.
Usage
convert_all_levels(
input_df,
input_MQ_pg,
software = c("MaxQuant", "DIA-NN", "Spectronaut", "PD")
)
Arguments
input_df |
A tibble with precursor, modified peptide and proteinGroup level information. For MaxQuant: evidence.txt and proteinGroups.txt, for PD: PSMs.txt with R-friendly headers enabled, for DIA-NN and Spectronaut default output reports. |
input_MQ_pg |
For MaxQuant: A tibble with proteinGroup level information - proteinGroups.txt. |
software |
The used analysis software - MaxQuant, PD, DIA-NN or Spectronaut. Default is MaxQuant. |
Details
The input entries are converted to a software independent format. The generated entries are appended to the submitted dataframe.
Value
This function returns the original submitted tibble
- input_df - including the following new columns:
traceR_precursor - software-independent standardized text for precursor entries.
traceR_precursor_unknownMods - logical value, if TRUE: a modification is detected, which is not converted to a standardized format.
traceR_mod.peptides - software-independent standardized text for modified peptide entries.
traceR_mod.peptides_unknownMods - logical value, if TRUE: a modification is detected, which is not converted to a standardized format.
traceR_proteinGroups - software-independent standardized text for proteinGroups.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tidyr)
library(comprehenr)
library(tibble)
# MaxQuant example data
evidence <- tibble::tibble(
"Modified sequence" = c("_AACLLPK_",
"_ALTDM(Oxidation (M))PQM(Oxidation (M))R_",
"ALTDM(Dummy_Modification)PQMK"),
Charge = c(2,2,3),
"Protein group IDs" = c("26", "86;17", "86;17")
)
proteingroups <- tibble::tibble(
"Protein IDs" = c("A0A075B6P5;P01615;A0A087WW87;P01614;A0A075B6S6", "P02671", "P02672"),
id = c(26, 86, 17)
)
# Conversion
convert_all_levels(
input_df = evidence,
input_MQ_pg = proteingroups,
software = "MaxQuant"
)
Conversion of software specific modified peptide entries
Description
Modified peptide entries are converted to a common text representation
Usage
convert_modified_peptides(
input_df,
software = c("MaxQuant", "PD", "DIA-NN", "Spectronaut")
)
Arguments
input_df |
A tibble with modified peptide level information. For MaxQuant: evidence.txt, for PD: PSMs.txt with R-friendly headers enabled, for DIA-NN and Spectronaut default output reports. |
software |
The used analysis software for the input_df - MaxQuant, PD, DIA-NN or Spectronaut. Default is MaxQuant. |
Details
The input entries are converted to a software independent format. The generated entries are appended to the submitted dataframe. Conversion of modifications is currently only available for UniMod:35 and UniMod:4. Other modifications will not be converted to standardized format.
Value
This function returns the original submitted tibble
- input_df - including two new columns:
traceR_mod.peptides - software-independent standardized text for modified peptide entries.
traceR_mod.peptides_unknownMods - logical value, if TRUE: a modification is detected, which is not converted to a standardized text.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tidyr)
library(tibble)
# MaxQuant example data
data <- tibble::tibble(
"Modified sequence" = c("_AACLLPK_",
"_ALTDM(Oxidation (M))PQM(Oxidation (M))R_",
"ALTDM(Dummy_Modification)PQMK"),
Charge = c(2,2,3)
)
# Conversion
convert_modified_peptides(
input_df = data,
software = "MaxQuant"
)
Conversion of software specific precursor entries
Description
Precursor entries are converted to a common text representation
Usage
convert_precursor(
input_df,
software = c("MaxQuant", "PD", "DIA-NN", "Spectronaut")
)
Arguments
input_df |
A tibble with precursor level information. For MaxQuant: evidence.txt, for PD: PSMs.txt with R-friendly headers enabled, for DIA-NN and Spectronaut default output reports. |
software |
The used analysis software for the input_df - MaxQuant, PD, DIA-NN or Spectronaut. Default is MaxQuant. |
Details
The input entries are converted to a software independent format. The generated entries are appended to the submitted dataframe. Conversion of modifications is currently only available for UniMod:35 and UniMod:4. Other modifications will not be converted to standardized format.
Value
This function returns the original submitted tibble
- input_df - including two new columns:
traceR_precursor - software-independent standardized text for precursor entries.
traceR_precursor_unknownMods - logical value, if TRUE: a modification is detected, which is not converted to a standardized text.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tidyr)
library(tibble)
# MaxQuant example data
data <- tibble::tibble(
"Modified sequence" = c("_AACLLPK_",
"_ALTDM(Oxidation (M))PQM(Oxidation (M))R_",
"ALTDM(Dummy_Modification)PQMK"),
Charge = c(2,2,3)
)
# Conversion
convert_precursor(
input_df = data,
software = "MaxQuant"
)
Conversion of software specific proteinGroups
Description
ProteinGroups are converted to a common text representation
Usage
convert_proteingroups(
input_df,
software = c("MaxQuant", "DIA-NN", "Spectronaut", "PD")
)
Arguments
input_df |
A tibble with proteinGroup level information. For MaxQuant: proteinGroups.txt, for PD: PSMs.txt with R-friendly headers enabled, for DIA-NN and Spectronaut default output reports. |
software |
The used analysis software for the input_df - MaxQuant, PD, DIA-NN or Spectronaut. Default is MaxQuant. |
Details
The input entries are converted to a software independent format. The generated entries are appended to the submitted dataframe.
Value
This function returns the original submitted tibble
- input_df - including one new column:
traceR_proteinGroups - software-independent standardized text for proteinGroups.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(comprehenr)
library(tibble)
# MaxQuant example data
data <- tibble::tibble(
"Protein IDs" = c("A0A075B6P5;P01615;A0A087WW87;P01614;A0A075B6S6", "P02671", "P02672"),
id = c(26, 86, 17)
)
# Conversion
convert_proteingroups(
input_df = data,
software = "MaxQuant"
)
Create example data
Description
Example data for ProteomeDiscoverer, Spectronaut, DIA-NN and MaxQuant.
Usage
get_example(
example = c("MaxQuant", "DIA-NN", "Spectronaut", "PD", "RetentionTime")
)
Arguments
example |
Choose between |
Details
Data for each software for testing functions of flowTraceR. Additional example data for Spectronaut and DIA-NN for analyzing retention time distribution on precursor level.
Value
This function returns example data as dataframe for the respective chosen example
. For "MaxQuant"
a list with evidence/proteingroup dataframe. For "RetentionTime"
a list with Spectronaut/DIA-NN data including retention time information.
Author(s)
Oliver Kardell
Examples
# Spectronaut example data
Spectronaut_data <- get_example(example = "Spectronaut")
Check of converted modifications
Description
Check if conversion to UniMod-format of identified modifications is successful.
Usage
get_unknown_mods(input_string, pattern_start, pattern_end)
Arguments
input_string |
character column traceR_precursor as string. |
pattern_start |
character of software-dependent beginning of representation of modifications. |
pattern_end |
character of software-dependent end of representation of modifications. |
Details
After conversion to standardized format by convert_precursor or convert_modified_peptides, entries with modifications are checked for a successful conversion. Conversion of modifications is currently only available for UniMod:35 and UniMod:4. Other modifications will not be converted to standardized format.
Value
This function returns vector with logical values. This function is incorporated in the functions convert_precursor and convert_modified_peptides; used to generate the unknownMods column : if TRUE: a modification is detected, which is not converted to a standardized text.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# Generate data
data <- tibble::tibble(
"traceR_precursor" = c("AACLLPK",
"ALTDM(UniMod:35)PQM(UniMod:35)R2",
"ALTDM(DummyModification)PQMK3")
)
# Unknown modifications present?
get_unknown_mods(input_string = data$traceR_precursor, pattern_start= "(", pattern_end = ")")
Trace common and unique identifications between different software outputs for all levels
Description
Identifications of two input data frames are compared and categorized in unique and common entries for each level.
Usage
trace_all_levels(
input_df1,
input_df2,
analysis_name1 = "input_df1",
analysis_name2 = "input_df2",
filter_unknown_mods = TRUE
)
Arguments
input_df1 |
A tibble with flowTraceR's standardized precursor, modified peptide and proteinGroup level information. |
input_df2 |
A tibble with flowTraceR's standardized precursor, modified peptide and proteinGroup level information. |
analysis_name1 |
output tibble name for input_df1 - default is |
analysis_name2 |
output tibble name for input_df2 - default is |
filter_unknown_mods |
Logical value, default is TRUE. If TRUE, unknown modifications are filtered out - requires "traceR_precursor_unknownMods" or "traceR_mod.peptides_unknownMods" column. |
Details
Based on flowTraceR's standardized output format two software outputs can be compared and categorized into common and unique identifications - for precursor, modified peptide and proteinGroup level.
Value
This function returns a list with both original submitted tibbles
- input_df1 and input_df2 - with the following new columns:
traceR_traced_precursor - categorization on precursor level in common and unique entries.
traceR_traced_mod.peptides - categorization on modified peptide level in common and unique entries.
traceR_traced_proteinGroups - categorization on proteinGroups level in common and unique entries.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496", "DummyProt"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK",
"EGIVEYPR", "ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE, TRUE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2",
"EGIVEYPR2", "ALTDM(DummyModification)PQMK3" ),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE, TRUE)
)
# Spectronaut example data
spectronaut <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "Q02985", "P02671"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "EGIVEYPR", "M(UniMod:35)KPVPDLVPGNFK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "EGIVEYPR2", "M(UniMod:35)KPVPDLVPGNFK2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
# trace all levels in one step
traced_all <- trace_all_levels(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
filter_unknown_mods = TRUE
)
Trace common and unique identifications between different software outputs
Description
Identifications of two input data frames are compared and categorized in unique and common entries.
Usage
trace_level(
input_df1,
input_df2,
analysis_name1 = "input_df1",
analysis_name2 = "input_df2",
level = c("precursor", "modified_peptides", "proteinGroups"),
filter_unknown_mods = TRUE
)
Arguments
input_df1 |
A tibble with flowTraceR's standardized precursor, modified peptide, or proteinGroup level information - required column depends on chosen |
input_df2 |
A tibble with flowTraceR's standardized precursor, modified peptide, or proteinGroup level information - required column depends on chosen |
analysis_name1 |
output tibble name for input_df1 - default is |
analysis_name2 |
output tibble name for input_df2 - default is |
level |
|
filter_unknown_mods |
Logical value, default is TRUE. If TRUE, unknown modifications are filtered out - requires "traceR_precursor_unknownMods" or "traceR_mod.peptides_unknownMods" column; depends on chosen |
Details
Based on flowTraceR's standardized output format two software outputs can be compared and categorized into common and unique identifications for a chosen level: precursor, modified peptide or proteinGroup level.
Value
This function returns a list with both original submitted tibbles
- input_df1 and input_df2 - including one of the following new columns depending on chosen level
:
traceR_traced_precursor - categorization on precursor level in common and unique entries.
traceR_traced_mod.peptides - categorization on modified peptide level in common and unique entries.
traceR_traced_proteinGroups - categorization on proteinGroups level in common and unique entries.
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496", "DummyProt"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "RLEVDIDIK",
"EGIVEYPR", "ALTDM(DummyModification)PQMK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE, TRUE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2",
"EGIVEYPR2", "ALTDM(DummyModification)PQMK3" ),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE, TRUE)
)
# Spectronaut example data
spectronaut <- tibble::tibble(
"traceR_proteinGroups" = c("P02768", "Q02985", "P02671"),
"traceR_mod.peptides" = c("AAC(UniMod:4)LLPK", "EGIVEYPR", "M(UniMod:35)KPVPDLVPGNFK"),
"traceR_mod.peptides_unknownMods" = c(FALSE, FALSE, FALSE),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "EGIVEYPR2", "M(UniMod:35)KPVPDLVPGNFK2"),
"traceR_precursor_unknownMods" = c(FALSE, FALSE, FALSE)
)
# trace proteinGroup level
traced_proteinGroups <- trace_level(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
level = "proteinGroups",
filter_unknown_mods = TRUE
)
# trace precursor level
traced_pecursor <- trace_level(
input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
level = "precursor",
filter_unknown_mods = TRUE
)
Trace unique_common categorization for proteinGroup level
Description
Unique_common categorizations are analyzed on proteinGroup level
Usage
trace_unique_common_pg(
input_df1,
input_df2,
analysis_name1 = "input_df1",
analysis_name2 = "input_df2",
string_analysis = FALSE
)
Arguments
input_df1 |
A tibble with flowTraceR's unique_common categorization for the proteinGroup_precursor connection. |
input_df2 |
A tibble which is the counter part for input_df1 - which was used to generate the unique_common categorization for the proteinGroup_precursor connection. |
analysis_name1 |
String. Appended to input_df1's traceR_proteinGroups column - default is |
analysis_name2 |
String. Appended to input_df1's traceR_proteinGroups column - default is |
string_analysis |
Logical value, default is |
Details
For each submitted dataframe the unique_common proteinGroup_precursor connection is analyzed to highlight potential differences in proteinGroup denotations for common precursors.
Value
This function returns a tibble
with the following columns :
traceR_proteinGroups_input_df1 - proteinGroup denotations of input_df1 for common precursor between input_df1 and input_df2
traceR_precursor - common precursor between input_df1 and input_df2
traceR_proteinGroups_input_df2 - proteinGroup denotations of input_df2 for common precursor between input_df1 and input_df2
Author(s)
Oliver Kardell
Examples
# Load libraries
library(dplyr)
library(stringr)
library(tibble)
# DIA-NN example data
diann <- tibble::tibble(
"traceR_connected_pg_prec" = c("common_common", "common_unique",
"unique_common", "unique_common"),
"traceR_proteinGroups" = c("P02768", "P02671", "Q92496", "P04433"),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "RLEVDIDIK2",
"EGIVEYPR2", "ASQSVSSYLAWYQQK2"),
)
# Spectronaut example data
spectronaut <- tibble::tibble(
"traceR_connected_pg_prec" = c("common_common", "common_unique",
"unique_common", "unique_common"),
"traceR_proteinGroups" = c("P02768", "P02671", "Q02985", "A0A0A0MRZ8;P04433"),
"traceR_precursor" = c("AAC(UniMod:4)LLPK1", "M(UniMod:35)KPVPDLVPGNFK2",
"EGIVEYPR2", "ASQSVSSYLAWYQQK2"),
)
# Find difference in pg denotation
# string_analysis = TRUE
resultA <- trace_unique_common_pg(input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
string_analysis = TRUE)
# Find difference in pg denotation
# string_analysis = FALSE
# compare with resultA
resultB <- trace_unique_common_pg(input_df1 = diann,
input_df2 = spectronaut,
analysis_name1 = "DIA-NN",
analysis_name2 = "Spectronaut",
string_analysis = FALSE)