Package ‘fastml’

July 24, 2025
Type Package
Title Fast Machine Learning Model Training and Evaluation
Version 0.6.2

Description Streamlines the training, evaluation, and comparison of multiple machine learning mod-
els with minimal code by providing
comprehensive data preprocessing and support for a wide range of algorithms with hyperparame-
ter tuning.
It offers performance metrics and visualization tools to facilitate efficient and effective ma-
chine learning workflows.

Encoding UTF-8
License MIT + file LICENSE

URL https://github.com/selcukorkmaz/fastml

BugReports https://github.com/selcukorkmaz/fastml/issues
LazyData true

Imports recipes, dplyr, ggplot2, reshape2, rsample, parsnip, tune,
workflows, yardstick, tibble, rlang, dials, RColorBrewer,
baguette, bonsai, discrim, doFuture, finetune, future, plsmod,
probably, viridisLite, DALEX, magrittr, patchwork, pROC,
janitor, stringr, DT, GGally, UpSetR, VIM, broom, dbscan,
ggpubr, gridExtra, htmlwidgets, kableExtra, moments, naniar,
plotly, scales, skimr, tidyr, knitr, rmarkdown, purrr, mice,
missForest

Suggests testthat (>= 3.0.0), C50, glmnet, xgboost, ranger, crayon,
kernlab, klaR, kknn, keras, lightgbm, rstanarm, mixOmics,

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Selcuk Korkmaz [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4632-6850>),
Dincer Goksuluk [aut] (ORCID: <https://orcid.org/0000-0002-2752-7668>),
Eda Karaismailoglu [aut] (ORCID:
<https://orcid.org/0000-0003-3085-7809>)

1

https://github.com/selcukorkmaz/fastml
https://github.com/selcukorkmaz/fastml/issues
https://orcid.org/0000-0003-4632-6850
https://orcid.org/0000-0002-2752-7668
https://orcid.org/0000-0003-3085-7809

Maintainer Selcuk Korkmaz <selcukorkmaz@gmail.com>

Depends R (>=3.5.0)
Repository CRAN
Date/Publication 2025-07-24 14:30:08 UTC

Contents

Index

availableMethods
evaluate models
fastexplain L o
fastexplore
fastml
flatten_and_rename _models
framingham L.
get_best model_idx
get_best_model_names
get_best_workflows L.
get_default_engine
get_default_params
get_default_tune_params
get_engine_nNameso e e e
get_model_engine_names
load_model
plotfastml L.
predictfastml
process_model
SANItIZE e e e e e e e
savefastml
summary.fastmlo
train_models

availableMethods

availableMethods Get Available Methods

Description

Returns a character vector of algorithm names available for either classification or regression tasks.

Usage

availableMethods(type = c("classification”, "regression”),

evaluate_models 3

Arguments
type A character string specifying the type of task. Must be either "classification”
or "regression”. Defaultsto c("classification”, "regression”) and uses
match.arg to select one.
Additional arguments (currently not used).
Details

Depending on the specified type, the function returns a different set of algorithm names:

» For "classification”, it returns algorithms such as "logistic_reg"”, "multinom_reg”,

n on

"decision_tree", "C5_rules”, "rand_forest”, "xgboost”, "lightgbm”, "svm_linear"”,

n o n n on

"svm_rbf"”, "nearest_neighbor”, "naive_Bayes", "mlp”, "discrim_linear"”, "discrim_quad”,
and "bag_tree".

non

» For "regression”, itreturns algorithms such as "linear_reg", "ridge_regression”, "lasso_regression”,

n on n on

"elastic_net”, "decision_tree”, "rand_forest”, "xghoost”, "lightgbm"”, "svm_linear”,

n on n o n

"svm_rbf"”, "nearest_neighbor”, "mlp"”, "pls”, and "bayes_glm".

Value

A character vector containing the names of the available algorithms for the specified task type.

evaluate_models Evaluate Models Function

Description

Evaluates the trained models on the test data and computes performance metrics.

Usage

evaluate_models(
models,
train_data,
test_data,
label,
task,
metric = NULL,
event_class

fastexplain

Arguments
models A list of trained model objects.
train_data Preprocessed training data frame.
test_data Preprocessed test data frame.
label Name of the target variable.
task Type of task: "classification" or "regression".
metric The performance metric to optimize (e.g., "accuracy", "rmse").

event_class

Value

A single string. Either "first" or "second" to specify which level of truth to
consider as the "event".

A list with two elements:

performance A named list of performance metric tibbles for each model.

predictions A named list of data frames with columns including truth, predictions, and probabili-
ties per model.

fastexplain

FastExplain the fastml (DALEX + SHAP + Permutation-based VI)

Description

Provides model explainability using DALEX. This function:

* Creates a DALEX explainer.

» Computes permutation-based variable importance with boxplots showing variability, displays
the table and plot.

* Computes partial dependence-like model profiles if ‘features‘ are provided.

e Computes Shapley values (SHAP) for a sample of the training observations, displays the
SHAP table, and plots a summary bar chart of mean(|SHAP value|) per feature. For clas-
sification, it shows separate bars for each class.

Usage

fastexplain(
object,
method = "dalex”,
features = NULL,
grid_size = 20,
shap_sample = 5,
vi_iterations = 10,
seed = 123,
loss_function = NULL,

fastexplore

Arguments

object
method

features

grid_size

shap_sample

vi_iterations
seed

loss_function

Details

A fastml object.
Currently only "dalex” is supported.

Character vector of feature names for partial dependence (model profiles). De-
fault NULL.

Number of grid points for partial dependence. Default 20.

Integer number of observations from processed training data to compute SHAP
values for. Default 5.

Integer. Number of permutations for variable importance (B). Default 10.
Integer. A value specifying the random seed.
Function. The loss function for model_parts.

e IfNULL and task = ’classification’, defaults to DALEX: : loss_cross_entropy.
e IfNULL and task = regression’, defaults to DALEX: : loss_root_mean_square.

Additional arguments (not currently used).

1. Custom number of permutations for VI (vi_iterations):

You can now specify how many permutations (B) to use for permutation-based variable im-
portance. More permutations yield more stable estimates but take longer.

2. Better error messages and checks:

Improved checks and messages if certain packages or conditions are not met.

3. Loss Function:

A loss_function argument has been added to let you pick a different performance measure
(e.g., loss_cross_entropy for classification, loss_root_mean_square for regression).

4. Parallelization Suggestion:

Value

Prints DALEX explanations: variable importance table & plot, model profiles (if any), and SHAP
table & summary plot.

fastexplore

Explore and Summarize a Dataset Quickly

Description

fastexplore provides a fast and comprehensive exploratory data analysis (EDA) workflow. It
automatically detects variable types, checks for missing and duplicated data, suggests potential ID
columns, and provides a variety of plots (histograms, boxplots, scatterplots, correlation heatmaps,
etc.). It also includes optional outlier detection, normality testing, and feature engineering.

6 fastexplore

Usage

fastexplore(
data,
label = NULL,
visualize = c("histogram”, "boxplot"”, "barplot", "heatmap"”, "scatterplot”),
save_results = TRUE,
output_dir = NULL,
sample_size = NULL,
interactive = FALSE,
corr_threshold = 0.9,
auto_convert_numeric = TRUE,
visualize_missing = TRUE,
imputation_suggestions = FALSE,
report_duplicate_details = TRUE,
detect_near_duplicates = TRUE,
auto_convert_dates = FALSE,
feature_engineering = FALSE,
outlier_method = c("igr", "zscore", "dbscan”, "lof"),
run_distribution_checks = TRUE,
normality_tests = c("shapiro”),
pairwise_matrix = TRUE,
max_scatter_cols = 5,
grouped_plots = TRUE,
use_upset_missing = TRUE

)
Arguments
data A data.frame. The dataset to analyze.
label A character string specifying the name of the target or label column (optional).
If provided, certain grouped plots and class imbalance checks will be performed.
visualize A character vector specifying which visualizations to produce. Possible values:

c("histogram”, "boxplot”, "barplot”, "heatmap”, "scatterplot”).

save_results Logical. If TRUE, saves plots and a rendered report (HTML) into a timestamped
EDA_Results_ folder inside output_dir.

output_dir A character string specifying the output directory for saving results (if save_results
= TRUE). Defaults to current working directory.

sample_size An integer specifying a random sample size for the data to be used in visualiza-
tions. If NULL, uses the entire dataset.

interactive Logical. If TRUE, attempts to produce interactive Plotly heatmaps and other
interactive elements. If required packages are not installed, falls back to static
plots.

corr_threshold Numeric. Threshold above which correlations (in absolute value) are flagged as
high. Defaults to 0. 9.

auto_convert_numeric
Logical. If TRUE, automatically converts factor/character columns that look nu-
meric (only digits, minus sign, or decimal point) to numeric.

fastexplore 7

visualize_missing
Logical. If TRUE, attempts to visualize missingness patterns (e.g., via an UpSet
plot, if UpSetR is available, or VIM, naniar).
imputation_suggestions
Logical. If TRUE, prints simple text suggestions for imputation strategies.
report_duplicate_details
Logical. If TRUE, shows top duplicated rows and their frequency.
detect_near_duplicates
Logical. Placeholder for near-duplicate (fuzzy) detection. Currently not imple-

mented.
auto_convert_dates

Logical. If TRUE, attempts to detect and convert date-like strings (YYYY-MM-DD)

to Date format.
feature_engineering

Logical. If TRUE, automatically engineers derived features (day, month, year)

from any date/time columns, and identifies potential ID columns.
outlier_method A character string indicating which outlier detection method(s) to apply. One of

c("iqr"”, "zscore", "dbscan”, "lof"). Only the first match will be used in

the code (though the function is designed to handle multiple).
run_distribution_checks

Logical. If TRUE, runs normality tests (e.g., Shapiro-Wilk) on numeric columns.
normality_tests

A character vector specifying which normality tests to run. Possible values in-

clude "shapiro” or "ks" (Kolmogorov-Smirnov). Only used if run_distribution_checks

= TRUE.
pairwise_matrix

Logical. If TRUE, produces a scatterplot matrix (using GGally) for numeric

columns.
max_scatter_cols

Integer. Maximum number of numeric columns to include in the pairwise ma-
trix.

grouped_plots Logical. If TRUE, produce grouped histograms, violin plots, and density plots by
label (if the label is a factor).

use_upset_missing
Logical. If TRUE, attempts to produce an UpSet plot for missing data if UpSetR
is available.

Details
This function automates many steps of EDA:

Automatically detects numeric vs. categorical variables.

Auto-converts columns that look numeric (and optionally date-like).
Summarizes data structure, missingness, duplication, and potential ID columns.
Computes correlation matrix and flags highly correlated pairs.

(Optional) Outlier detection using IQR, Z-score, DBSCAN, or LOF methods.
(Optional) Normality tests on numeric columns.

N R L=

Saves all results and an R Markdown report if save_results = TRUE.

8 fastml

Value
A (silent) list containing:

* data_overview - A basic overview (head, unique values, skim summary).

* summary_stats - Summary statistics for numeric columns.

* freq_tables - Frequency tables for factor columns.

* missing_data - Missing data overview (count, percentage).

* duplicated_rows - Count of duplicated rows.

* class_imbalance - Class distribution if label is provided and is categorical.
e correlation_matrix - The correlation matrix for numeric variables.

* zero_variance_cols - Columns with near-zero variance.

* potential_id_cols - Columns with unique values in every row.

» date_time_cols - Columns recognized as date/time.

e high_corr_pairs - Pairs of variables with correlation above corr_threshold.
* outlier_method - The chosen method for outlier detection.

* outlier_summary - Outlier proportions or metrics (if computed).

If save_results = TRUE, additional side effects include saving figures, a correlation heatmap, and
an R Markdown report in the specified directory.

fastml Fast Machine Learning Function

Description

Trains and evaluates multiple classification or regression models automatically detecting the task
based on the target variable type.

Usage

fastml(
data = NULL,
train_data = NULL,
test_data = NULL,
label,
algorithms = "all",
task = "auto",
test_size = 0.2,
resampling_method = "cv",
folds = ifelse(grepl(”cv”, resampling_method), 10, 25),
repeats = ifelse(resampling_method == "repeatedcv”, 1, NA),
event_class = "first”,
exclude = NULL,

fastml

recipe = NULL,
tune_params = NULL,
metric = NULL,
algorithm_engines = NULL,

n_cores = 1,

stratify = TRUE,

impute_method = "error”,
impute_custom_function = NULL,
encode_categoricals = TRUE,
scaling_methods = c("center"”, "scale"),
balance_method = c("none"”, "upsample”, "downsample"),
resamples = NULL,

summaryFunction = NULL,
use_default_tuning = FALSE,
tuning_strategy = "grid",
tuning_iterations = 10,

early_stopping = FALSE,

adaptive

FALSE,

learning_curve = FALSE,

seed = 123,
FALSE

verbose

Arguments

data

train_data
test_data

label
algorithms

task

test_size

A data frame containing the complete dataset. If both ‘train_data‘ and ‘test_data‘
are ‘NULL", ‘“fastml()‘ will split this into training and testing sets according to
‘test_size‘ and ‘stratify‘. Defaults to ‘NULL".

A data frame pre-split for model training. If provided, ‘test_data‘ must also be
supplied, and no internal splitting will occur. Defaults to ‘NULL".

A data frame pre-split for model evaluation. If provided, ‘train_data‘ must also
be supplied, and no internal splitting will occur. Defaults to ‘NULL".

A string specifying the name of the target variable.

A vector of algorithm names to use. Default is "all” to run all supported algo-
rithms.

Character string specifying model type selection. Use "auto" to let the function
detect whether the target is for classification or regression based on the data, or
explicitly set to "classification" or "regression".

A numeric value between 0 and 1 indicating the proportion of the data to use for
testing. Default is @. 2.

resampling_method

folds

repeats

A string specifying the resampling method for model evaluation. Defaultis "cv"”
(cross-validation). Other options include "none”, "boot”, "repeatedcv”, etc.

An integer specifying the number of folds for cross-validation. Default is 10 for
methods containing "cv" and 25 otherwise.

Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

10

fastml

event_class A single string. Either "first" or "second" to specify which level of truth to
consider as the "event". Default is "first".

exclude A character vector specifying the names of the columns to be excluded from the
training process.

recipe A user-defined recipe object for custom preprocessing. If provided, internal
recipe steps (imputation, encoding, scaling) are skipped.

tune_params A named list of tuning ranges for each algorithm and engine pair. Example:
list(rand_forest = list(ranger = list(mtry = c(1, 3)))) will override the
defaults for the ranger engine. Default is NULL.

metric The performance metric to optimize during training.

algorithm_engines
A named list specifying the engine to use for each algorithm.

n_cores An integer specifying the number of CPU cores to use for parallel processing.
Defaultis 1.

stratify Logical indicating whether to use stratified sampling when splitting the data.
Default is TRUE for classification and FALSE for regression.

impute_method Method for handling missing values. Options include:

"medianImpute” Impute missing values using median imputation (recipe-based).
"knnImpute” Impute missing values using k-nearest neighbors (recipe-based).
"bagImpute” Impute missing values using bagging (recipe-based).
"remove"” Remove rows with missing values from the data (recipe-based).
"mice” Impute missing values using MICE (Multiple Imputation by Chained
Equations).
"missForest” Impute missing values using the missForest algorithm.
"custom” Use a user-provided imputation function (see ‘impute_custom_function®).
"error” Do not perform imputation; if missing values are detected, stop exe-
cution with an error.
NULL Equivalentto "error”. No imputation is performed, and the function will
stop if missing values are present.
Default is "error”.
impute_custom_function
A function that takes a data.frame as input and returns an imputed data.frame.
Used only if impute_method = "custom”.
encode_categoricals
Logical indicating whether to encode categorical variables. Default is TRUE.
scaling_methods
Vector of scaling methods to apply. Default is c("center”, "scale”).

non

balance_method Method to handle class imbalance. One of "none”, "upsample”, or "downsample”.
Applied to the training set for classification tasks. Default is "none”.

resamples Optional rsample object providing custom resampling splits. If supplied, resampling_method,
folds, and repeats are ignored.

summaryFunction
A custom summary function for model evaluation. Default is NULL.

fastml 11

use_default_tuning
Logical; if TRUE and tune_params is NULL, tuning is performed using default
grids. Tuning also occurs when custom tune_params are supplied. When FALSE
and no custom parameters are given, models are fitted once with default settings.
Default is FALSE.

tuning_strategy
A string specifying the tuning strategy. Must be one of "grid”, "bayes”,
or "none”. Default is "grid”. If custom tune_params are provided while
tuning_strategy = "none”, they will be ignored with a warning.

tuning_iterations
Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes”. Validation of this argument only occurs for the Bayesian strategy.
Default is 10.

early_stopping Logical indicating whether to use early stopping in Bayesian tuning methods (if
supported). Default is FALSE.

adaptive Logical indicating whether to use adaptive/racing methods for tuning. Default
is FALSE.

learning_curve Logical. If TRUE, generate learning curves (performance vs. training size).

seed An integer value specifying the random seed for reproducibility.
verbose Logical; if TRUE, prints progress messages during the training and evaluation
process.
Details

Fast Machine Learning Function

Trains and evaluates multiple classification or regression models. The function automatically de-
tects the task based on the target variable type and can perform advanced hyperparameter tuning
using various tuning strategies.

Value

An object of class fastml containing the best model, performance metrics, and other information.

Examples

Example 1: Using the iris dataset for binary classification (excluding 'setosa')
data(iris)

iris <- iris[iris$Species != "setosa”,] # Binary classification

iris$Species <- factor(iris$Species)

Define a custom tuning grid for the ranger engine
tune <- list(
rand_forest = list(
ranger = list(mtry = c(1, 3))
)
)

Train models with custom tuning

12 flatten_and_rename_models

model <- fastml(
data = iris,
label = "Species”,
algorithms = "rand_forest”,
tune_params = tune,
use_default_tuning = TRUE

View model summary
summary (model)

flatten_and_rename_models
Flatten and Rename Models

Description
Flattens a nested list of models and renames the elements by combining the outer and inner list
names.

Usage

flatten_and_rename_models(models)

Arguments
models A nested list of models. The outer list should have names. If an inner element
is a named list, the names will be combined with the outer name in the format
"outer_name (inner_name)".
Details

The function iterates over each element of the outer list. For each element, if it is a list with names,
the function concatenates the outer list name and the inner names using paste@ and setNames. If
an element is not a list or does not have names, it is included in the result without modification.

Value

A flattened list with each element renamed according to its original outer and inner list names.

framingham 13

framingham Framingham Heart Study Data

Description

This dataset is derived from the Framingham Heart Study and contains various clinical and demo-
graphic variables used to predict coronary heart disease risk over a ten-year period.

Format

male Integer indicator for male sex.

age Participant age in years.

education Education level.

currentSmoker Whether the participant currently smokes.
cigsPerDay Number of cigarettes smoked per day.
BPMeds Whether blood pressure medication is used.
prevalentStroke History of stroke at baseline.
prevalentHyp History of hypertension at baseline.
diabetes Diabetes diagnosis.

totChol Total cholesterol.

sysBP Systolic blood pressure.

diaBP Diastolic blood pressure.

BMI Body mass index.

heartRate Heart rate.

glucose Glucose level.

TenYearCHD Ten year risk of coronary heart disease.

get_best_model_idx Get Best Model Indices by Metric and Group

Description

Identifies and returns the indices of rows in a data frame where the specified metric reaches the
overall maximum within groups defined by one or more columns.

Usage

get_best_model_idx(df, metric, group_cols = c("Model”, "Engine"))

14 get_best_model_names

Arguments
df A data frame containing model performance metrics and grouping columns.
metric A character string specifying the name of the metric column in df. The metric
values are converted to numeric for comparison.
group_cols A character vector of column names used for grouping. Defaults to c("Model”,
"Engine").
Details

The function converts the metric values to numeric and creates a combined grouping factor using
the specified group_cols. It then computes the maximum metric value within each group and
determines the overall best metric value across the entire data frame. Finally, it returns the indices
of rows belonging to groups that achieve this overall maximum.

Value

A numeric vector of row indices in df corresponding to groups whose maximum metric equals the
overall best metric value.

get_best_model_names Get Best Model Names

Description

Extracts and returns the best engine names from a named list of model workflows.

Usage

get_best_model_names(models)

Arguments
models A named list where each element corresponds to an algorithm and contains a list
of model workflows. Each workflow should be compatible with tune: :extract_fit_parsnip.
Details

For each algorithm, the function extracts the engine names from the model workflows using tune: :extract_fit_parsnip.
It then chooses "randomForest” if it is available; otherwise, it selects the first non-NA engine. If no
engine names can be extracted for an algorithm, NA_character_ is returned.

Value

A named character vector. The names of the vector correspond to the algorithm names, and the
values represent the chosen best engine name for that algorithm.

get_best_workflows 15

get_best_workflows Get Best Workflows

Description
Extracts the best workflows from a nested list of model workflows based on the provided best model
names.

Usage

get_best_workflows(models, best_model_name)

Arguments

models A nested list of model workflows. Each element should correspond to an algo-
rithm and contain sublists keyed by engine names.

best_model_name

A named character vector where the names represent algorithm names and the
values represent the chosen best engine for each algorithm.

Details

The function iterates over each element in best_model_name and attempts to extract the corre-
sponding workflow from models using the specified engine. If the workflow for an algorithm-
engine pair is not found, a warning is issued and NULL is returned for that entry.

Value

A named list of workflows corresponding to the best engine for each algorithm. Each list element
is named in the format "algorithm (engine)”.

get_default_engine Get Default Engine

Description

Returns the default engine corresponding to the specified algorithm.

Usage
get_default_engine(algo)

Arguments

algo A character string specifying the name of the algorithm. The value should match
one of the supported algorithm names.

16 get_default_params

Details

The function uses a switch statement to select the default engine based on the given algorithm. If
the provided algorithm does not have a defined default engine, the function terminates with an error.

Value

A character string containing the default engine name associated with the provided algorithm.

get_default_params Get Default Parameters for an Algorithm

Description

Returns a list of default tuning parameters for the specified algorithm based on the task type, number
of predictors, and engine.

Usage

get_default_params(algo, task, num_predictors = NULL, engine = NULL)

Arguments

algo A character string specifying the algorithm name. Supported values include:

n on

"rand_forest"”, "C5_rules”, "xgboost", "lightgbm"”, "logistic_reg"”, "multinom_reg",
"decision_tree", "svm_linear", "svm_rbf", "nearest_neighbor", "naive_Bayes",
"mlp"”, "deep_learning”, "discrim_linear", "discrim_quad”, "bag_tree",
"elastic_net"”, "bayes_glm", "pls”, "linear_reg"”, "ridge_regression”,

and "lasso_regression”.

task A character string specifying the task type, typically "classification” or
"regression”.

num_predictors An optional numeric value indicating the number of predictors. This value is
used to compute default values for parameters such as mtry. Defaults to NULL.

engine An optional character string specifying the engine to use. If not provided, a
default engine is chosen where applicable.

Details

The function employs a switch statement to select and return a list of default parameters tailored
for the given algorithm, task, and engine. The defaults vary by algorithm and, in some cases, by
engine. For example:

* For "rand_forest”, if engine is not provided, it defaults to "ranger". The parameters such
as mtry, trees, and min_n are computed based on the task and the number of predictors.
e For "C5_rules”, the defaults include trees, min_n, and sample_size.

* For "xgboost” and "lightgbm", default values are provided for parameters like tree depth,
learning rate, and sample size.

get_default_tune_params 17

* For "logistic_reg” and "multinom_reg”, the function returns defaults for regularization
parameters (penalty and mixture) that vary with the specified engine.

* For "decision_tree”, the parameters (such as tree_depth, min_n, and cost_complexity)
are set based on the engine (e.g., "rpart”, "C5.0", "partykit”, "spark").
* Other algorithms, including "svm_linear"”, "svm_rbf", "nearest_neighbor"”, "naive_Bayes",

"mlp"”, "deep_learning”, "elastic_net”, "bayes_glm"”, "pls”, "linear_reg", "ridge_regression”,
and "lasso_regression”, have their respective default parameter lists.

Value

A list of default parameter settings for the specified algorithm. If the algorithm is not recognized,
the function returns NULL.

get_default_tune_params
Get Default Tuning Parameters

Description
Returns a list of default tuning parameter ranges for a specified algorithm based on the provided
training data, outcome label, and engine.

Usage

get_default_tune_params(algo, train_data, label, engine)

Arguments
algo A character string specifying the algorithm name. Supported values include:
"rand_forest"”, "C5_rules”, "xgboost"”, "lightgbm"”, "logistic_reg"”, "multinom_reg",
"decision_tree"”, "svm_linear”, "svm_rbf", "nearest_neighbor”, "naive_Bayes",
"mlp"”, "deep_learning”, "discrim_linear", "discrim_quad”, "bag_tree",
"elastic_net"”, "bayes_glm", "pls”, "linear_reg"”, "ridge_regression”,
and "lasso_regression”.
train_data A data frame containing the training data.
label A character string specifying the name of the outcome variable in train_data.
This column is excluded when calculating the number of predictors.
engine A character string specifying the engine to be used for the algorithm. Different
engines may have different tuning parameter ranges.
Details

The function first determines the number of predictors by removing the outcome variable (speci-
fied by label) from train_data. It then uses a switch statement to select a list of default tuning
parameter ranges tailored for the specified algorithm and engine. The tuning ranges have been ad-
justed for efficiency and may include parameters such as mtry, trees, min_n, and others depending
on the algorithm.

18 get_model_engine_names

Value

A list of tuning parameter ranges for the specified algorithm. If no tuning parameters are defined
for the given algorithm, the function returns NULL.

get_engine_names Get Engine Names from Model Workflows

Description

Extracts and returns a list of unique engine names from a list of model workflows.

Usage

get_engine_names(models)

Arguments
models A list where each element is a list of model workflows. Each workflow is ex-
pected to contain a fitted model that can be processed with tune: :extract_fit_parsnip.
Details

The function applies tune: :extract_fit_parsnip to each model workflow to extract the fitted
model object. It then retrieves the engine name from the model specification (spec$engine). If the
extraction fails, NA_character_ is returned for that workflow. Finally, the function removes any
duplicate engine names using unique.

Value

A list of character vectors. Each vector contains the unique engine names extracted from the corre-
sponding element of models.

get_model_engine_names
Get Model Engine Names

Description
Extracts and returns a named vector mapping algorithm names to engine names from a nested list
of model workflows.

Usage

get_model_engine_names(models)

load_model 19

Arguments
models A nested list of model workflows. Each inner list should contain model objects
from which a fitted model can be extracted using tune: :extract_fit_parsnip.
Details

The function iterates over a nested list of model workflows and, for each workflow, attempts to
extract the fitted model object using tune: :extract_fit_parsnip. If successful, it retrieves the
algorithm name from the first element of the class attribute of the model specification and the engine
name from the specification. The results are combined into a named vector.

Value

A named character vector where the names correspond to algorithm names (e.g., "rand_forest",
"logistic_reg") and the values correspond to the associated engine names (e.g., "ranger”, "glm").

load_model Load Model Function

Description

Loads a trained model object from a file.

Usage

load_model (filepath)

Arguments

filepath A string specifying the file path to load the model from.

Value

An object of class fastml.

20 plot.fastml

plot.fastml Plot Methods for fastml Objects

Description

plot.fastml produces visual diagnostics for a trained fastml object.

Usage
S3 method for class 'fastml'
plot(
X ’
algorithm = "best",
type = c("all”, "bar"”, "roc", "calibration”, "residual"),
)
Arguments
X A fastml object (output of fastml()).
algorithm Character vector specifying which algorithm(s) to include when generating cer-
tain plots (e.g., ROC curves). Defaults to "best”.
type Character vector indicating which plot(s) to produce. Options are:
"bar” Bar plot of performance metrics across all models/engines.
"roc” ROC curve(s) for binary classification models.
"calibration” Calibration plot for the best model(s).
"residual” Residual diagnostics for the best model.
"all” Produce all available plots.
Additional arguments (currently unused).
Details

When type = "all”, plot.fastml will produce a bar plot of metrics, ROC curves (classification),
calibration plot, and residual diagnostics (regression). If you specify a subset of types, only those
will be drawn.

Examples
Create a binary classification dataset from iris
data(iris)
iris <- iris[iris$Species != "setosa"”,]

iris$Species <- factor(iris$Species)

Fit fastml model on binary classification task
model <- fastml(data = iris, label = "Species”, algorithms = c("rand_forest”, "svm_rbf"))

predict.fastml 21

1. Plot all available diagnostics
plot(model, type = "all")

2. Bar plot of performance metrics
plot(model, type = "bar")

3. ROC curves (only for classification models)
plot(model, type = "roc")

4. Calibration plot (requires 'probably' package)
plot(model, type = "calibration”)

5. ROC curves for specific algorithm(s) only
plot(model, type = "roc", algorithm = "rand_forest"”)

6. Residual diagnostics (only available for regression tasks)

model <- fastml(data = mtcars, label = "mpg"”, algorithms = c("linear_reg", "xgboost"))
plot(model, type = "residual”)

predict.fastml Predict method for fastml objects

Description

Generates predictions from a trained ‘fastml‘ object on new data. Supports both single-model
and multi-model workflows, and handles classification and regression tasks with optional post-
processing and verbosity.

Usage

S3 method for class 'fastml'
predict(

object,

newdata,

type = "auto”,

model_name = NULL,

verbose = FALSE,

postprocess_fn = NULL,

)
Arguments
object A fitted ‘fastml‘ object created by the ‘fastml()‘ function.
newdata A data frame or tibble containing new predictor data for which to generate pre-

dictions.

22 process_model

o

type Type of prediction to return. One of ‘"auto"‘ (default), ‘"class"‘, ‘"prob"‘, or
numeric"‘. - “"auto"‘: chooses ‘"class"‘ for classification and ‘"numeric"* for
regression. - ‘"prob"‘: returns class probabilities (only for classification). -
“"class"‘: returns predicted class labels. - ‘"numeric

meric values (for regression).

o o ne o

Al ne,

: returns predicted nu-

model_name (Optional) Name of a specific model to use when ‘object$best_model‘ contains
multiple models.

verbose Logical; if “TRUE, prints progress messages showing which models are used
during prediction.

postprocess_fn (Optional) A function to apply to the final predictions (e.g., inverse transforms,
thresholding).

Additional arguments (currently unused).

Value

A vector of predictions, or a named list of predictions (if multiple models are used). If ‘postpro-
cess_fn‘ is supplied, its output will be returned instead.

Examples

Not run:
set.seed(123)
model <- fastml(iris, label = "Species"”)
test_data <- iris[sample(1:150, 20),-5]

Best model(s) predictions
preds <- predict(model, newdata = test_data)

Predicted class probabilities using best model(s)
probs <- predict(model, newdata = test_data, type = "prob")

Prediction from a specific model by name
single_model_preds <- predict(model, newdata = test_data, model_name = "rand_forest (ranger)")

End(Not run)

process_model Process and Evaluate a Model Workflow

Description

This function processes a fitted model or a tuning result, finalizes the model if tuning was used,
makes predictions on the test set, and computes performance metrics depending on the task type
(classification or regression). It supports binary and multiclass classification, and handles proba-
bilistic outputs when supported by the modeling engine.

process_model

Usage

process_model (
model_obj,
model_id,
task,
test_data,
label,
event_class,
engine,
train_data,
metric

Arguments

model_obj
model_id
task
test_data
label

event_class

engine

train_data

metric

Details

23

A fitted model or a tuning result (‘tune_results‘ object).

A character identifier for the model (used in warnings).

on ne

Type of task, either ‘"classification"* or ‘"regression"*.

A data frame containing the test data.
The name of the outcome variable (as a character string).

For binary classification, specifies which class is considered the positive class:
‘”ﬁrst"‘ OI' ‘"Sec()nd”‘

ne en

A character string indicating the model engine (e.g., *"xgboost"‘, ‘"randomFor-
est"*). Used to determine if class probabilities are supported. If ‘NULL*, prob-
abilities are skipped.

A data frame containing the training data, required to refit finalized workflows.

ne n ne n ne

The name of the metric (e.g., “"roc_auc"*, “"accuracy"‘, ‘"rmse"*) used for se-
lecting the best tuning result.

- If the input ‘model_obj‘ is a ‘tune_results‘ object, the function finalizes the model using the best
hyperparameters according to the specified ‘metric‘, and refits the model on the full training data.

- For classification tasks, performance metrics include accuracy, kappa, sensitivity, specificity, pre-
cision, Fl-score, and ROC AUC (if probabilities are available).

- For regression tasks, RMSE, R-squared, and MAE are returned.

- For models with missing prediction lengths, a helpful imputation error is thrown to guide data

preprocessing.

Value

A list with two elements:

performance A tibble with computed performance metrics.

predictions A tibble with predicted values and corresponding truth values, and probabilities (if

applicable).

24 save.fastml

sanitize Clean Column Names or Character Vectors by Removing Special
Characters

Description
This function can operate on either a data frame or a character vector:

* Data frame: Detects columns whose names contain any character that is not a letter, number,
or underscore, removes colons, replaces slashes with underscores, and spaces with under-
scores.

* Character vector: Applies the same cleaning rules to every element of the vector.

Usage
sanitize(x)
Arguments
X A data frame or character vector to be cleaned.
Value
e If x is a data frame: returns a data frame with cleaned column names.
 If x is a character vector: returns a character vector with cleaned elements.
save.fastml Save Model Function
Description

Saves the trained model object to a file.

Usage

save.fastml(model, filepath)

Arguments

model An object of class fastml.

filepath A string specifying the file path to save the model.
Value

No return value, called for its side effect of saving the model object to a file.

summary.fastml 25

summary . fastml Summary Function for fastml (Using yardstick for ROC Curves)

Description

Summarizes the results of machine learning models trained using the ‘fastml‘ package. Depending
on the task type (classification or regression), it provides customized output such as performance
metrics, best hyperparameter settings, and confusion matrices. It is designed to be informative and
readable, helping users quickly interpret model results.

Usage
S3 method for class 'fastml'
summary (
object,
algorithm = "best”,
type = c("all”, "metrics”, "params”, "conf_mat"),

sort_metric = NULL,

)
Arguments
object An object of class fastml.
algorithm A vector of algorithm names to display summary. Default is "best”.
type Character vector indicating which outputs to produce. Options are "all” (all
available outputs), "metrics” (performance metrics), "params” (best hyperpa-
rameters), and "conf_mat" (confusion matrix). Default is "all"”.
sort_metric The metric to sort by. Default uses optimized metric.
Additional arguments.
Details

For classification tasks, the summary includes metrics such as Accuracy, F1 Score, Kappa, Pre-
cision, ROC AUC, Sensitivity, and Specificity. A confusion matrix is also provided for the best
model(s). For regression tasks, the summary reports RMSE, R-squared, and MAE.

Users can control the type of output with the ‘type‘ argument: ‘metrics‘ displays model performance
metrics. ‘params‘ shows the best hyperparameter settings. ‘conf_mat‘ prints confusion matrices
(only for classification). ‘all® includes all of the above.

If multiple algorithms are trained, the summary highlights the best model based on the optimized
metric.

Value

Prints summary of fastml models.

26 train_models

train_models Train Specified Machine Learning Algorithms on the Training Data

Description

Trains specified machine learning algorithms on the preprocessed training data.

Usage

train_models(
train_data,
label,
task,
algorithms,
resampling_method,
folds,
repeats,
resamples = NULL,
tune_params,
metric,
summaryFunction = NULL,
seed = 123,
recipe,
use_default_tuning = FALSE,
tuning_strategy = "grid",
tuning_iterations = 10,
early_stopping = FALSE,
adaptive = FALSE,
algorithm_engines = NULL

)
Arguments
train_data Preprocessed training data frame.
label Name of the target variable.
task Type of task: "classification" or "regression".
algorithms Vector of algorithm names to train.

resampling_method
Resampling method for cross-validation (e.g., "cv", "repeatedcv", "boot", "none").

folds Number of folds for cross-validation.

repeats Number of times to repeat cross-validation (only applicable for methods like
"repeatedcv").

resamples Optional rsample object. If provided, custom resampling splits will be used
instead of those created internally.

train_models 27

tune_params A named list of tuning ranges. For each algorithm, supply a list of engine-
specific parameter values, e.g. 1list(rand_forest = list(ranger = list(mtry
=c(1,3)))).

metric The performance metric to optimize.

summaryFunction
A custom summary function for model evaluation. Default is NULL.

seed An integer value specifying the random seed for reproducibility.

recipe A recipe object for preprocessing.

use_default_tuning
Logical; if TRUE and tune_params is NULL, tuning is performed using default
grids. Tuning also occurs when custom tune_params are supplied. When FALSE
and no custom parameters are given, the model is fitted once with default set-
tings.

tuning_strategy
A string specifying the tuning strategy. Must be one of "grid”, "bayes”, or
"none”. Adaptive methods may be used with "grid”. If "none" is selected, the
workflow is fitted directly without tuning. If custom tune_params are supplied
with tuning_strategy = "none”, they will be ignored with a warning.

tuning_iterations
Number of iterations for Bayesian tuning. Ignored when tuning_strategy is
not "bayes"; validation occurs only for the Bayesian strategy.

early_stopping Logical for early stopping in Bayesian tuning.
adaptive Logical indicating whether to use adaptive/racing methods.

algorithm_engines
A named list specifying the engine to use for each algorithm.

Value

A list of trained model objects.

Index

availableMethods, 2
evaluate_models, 3

fastexplain, 4

fastexplore, 5

fastml, 8, 20
flatten_and_rename_models, 12
framingham, 13

get_best_model_idx, 13
get_best_model_names, 14
get_best_workflows, 15
get_default_engine, 15
get_default_params, 16
get_default_tune_params, 17
get_engine_names, 18
get_model_engine_names, 18

load_model, 19
match.arg, 3

plot.fastml, 20
predict.fastml, 21
process_model, 22

sanitize, 24
save.fastml, 24
summary. fastml, 25

train_models, 26

28

	availableMethods
	evaluate_models
	fastexplain
	fastexplore
	fastml
	flatten_and_rename_models
	framingham
	get_best_model_idx
	get_best_model_names
	get_best_workflows
	get_default_engine
	get_default_params
	get_default_tune_params
	get_engine_names
	get_model_engine_names
	load_model
	plot.fastml
	predict.fastml
	process_model
	sanitize
	save.fastml
	summary.fastml
	train_models
	Index

