Type: Package
Title: An Empirical Model for Underdispersed Count Data
Version: 0.1.2
Description: Count regression models for underdispersed small counts (lambda < 20) based on the three-parameter exponentially weighted Poisson distribution of Ridout & Besbeas (2004) <doi:10.1191/1471082X04st064oa>.
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
Depends: R (≥ 2.10)
LinkingTo: BH, Rcpp
Imports: Rcpp, mvtnorm
Suggests: covr, DHARMa, testthat (≥ 3.0.0)
Config/testthat/edition: 3
NeedsCompilation: yes
Packaged: 2025-04-22 11:05:05 UTC; philipp.boerschsupan
Author: Philipp Boersch-Supan ORCID iD [aut, cre], James Clarke ORCID iD [aut]
Maintainer: Philipp Boersch-Supan <pboesu@gmail.com>
Repository: CRAN
Date/Publication: 2025-04-22 11:20:02 UTC

Extract coefficients

Description

Extract coefficients

Usage

## S3 method for class 'ewp'
coef(object, ...)

Arguments

object

an object of class ewp

...

ignored

Value

a vector of coefficient values. Beware that the lambda parameters are on the log-link scale, whereas the betas are estimated using an identity link.


Probability mass function of the three-parameter EWP

Description

Probability mass function of the three-parameter EWP

Usage

dewp3(x, lambda, beta1, beta2, sum_limit = max(x) * 3)

Arguments

x

vector of (positive integer) quantiles.

lambda

centrality parameter

beta1

lower-tail dispersion parameter

beta2

upper tail dispersion parameter

sum_limit

summation limit for the normalizing factor

Value

a vector of probabilities


Probability mass function of the three-parameter EWP

Description

Probability mass function of the three-parameter EWP

Usage

dewp3_cpp(x, lambda, beta1, beta2, sum_limit)

Arguments

x

vector of (positive integer) quantiles.

lambda

centrality parameter

beta1

lower-tail dispersion parameter

beta2

upper tail dispersion parameter

sum_limit

summation limit for the normalizing factor

Value

a probability mass


Exponentially weighted Poisson regression model

Description

Exponentially weighted Poisson regression model

Usage

ewp_reg(
  formula,
  family = "ewp3",
  data,
  verbose = TRUE,
  method = "Nelder-Mead",
  hessian = TRUE,
  autoscale = TRUE,
  maxiter = 500,
  sum_limit = round(max(Y) * 3),
  start_val = NULL
)

Arguments

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.

family

choice of "ewp2" or "ewp3"

data

a data frame containing the variables in the model.

verbose

logical, defaults to TRUE; print model fitting progress

method

string, passed to optim, defaults to 'BFGS'

hessian

logical, defaults to TRUE; calculate Hessian?

autoscale

logical, defaults to TRUE; automatically scale model parameters inside the optimisation routine based on initial estimates from a Poisson regression.

maxiter

numeric, maximum number of iterations for optim

sum_limit

numeric, defaults to 3*maximum count; upper limit for the sum used for the normalizing factor.

start_val

list, defaults to fitting a Poisson regression; specify starting values

Value

an ewp model


Extract fitted values

Description

Extract fitted values

Usage

## S3 method for class 'ewp'
fitted(object, ...)

Arguments

object

an object of class ewp

...

ignored

Value

a vector of fitted values on the response scale


Linnet clutch sizes

Description

A dataset containing the clutch sizes for linnet, recreated from Ridout & Besbeas 2004

Usage

linnet

Format

A data frame with 5414 rows and 3 variables:

eggs

clutch size

cov1

a synthetic random noise covariate

cov2

a synthetic covariate that is positively correlated with the outcome

Source

Ridout & Besbeas 2004, P. Boersch-Supan


Extract log likelihood

Description

Extract log likelihood

Usage

## S3 method for class 'ewp'
logLik(object, ...)

Arguments

object

an object of class ewp

...

ignored

Value

a numeric


Estimate marginal means

Description

Estimate marginal means

Usage

mmean(object, cov, ci = TRUE, nsamples = 250, ...)

Arguments

object

ewp model object

cov

character, covariate to find marginal mean for

ci

logical, defaults to TRUE, whether or not to include confidence intervals

nsamples

numeric, defaults to 250, number of samples for use in obtaining the confidence intervals

...

ignored

Value

printout of the marginal means


Predict from fitted model

Description

Predict from fitted model

Usage

## S3 method for class 'ewp'
predict(object, newdata, type = c("response"), na.action = na.pass, ...)

Arguments

object

ewp model object

newdata

optional data.frame

type

character; default="response", no other type implemented

na.action

defaults to na.pass()

...

ignored

Value

a vector of predictions


Print ewp model object

Description

Print ewp model object

Usage

## S3 method for class 'ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x

ewp model object

digits

digits to print

...

ignored

Value

a summary printout of the ewp model call and fitted coefficients.


Print ewp model summary

Description

Print ewp model summary

Usage

## S3 method for class 'summary.ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x

ewp model summary

digits

number of digits to print

...

additional arguments to printCoefmat()

Value

printout of the summary object


Random samples from the three-parameter EWP

Description

Random samples from the three-parameter EWP

Usage

rewp3(n, lambda, beta1, beta2, sum_limit = 30)

Arguments

n

number of observations

lambda

centrality parameter

beta1

lower-tail dispersion parameter

beta2

upper tail dispersion parameter

sum_limit

summation limit for the normalizing factor

Value

random deviates from the EWP_3 distribution


simulate from fitted model

Description

simulate from fitted model

Usage

## S3 method for class 'ewp'
simulate(object, nsim = 1, ...)

Arguments

object

ewp model object

nsim

number of response vectors to simulate. Defaults to 1.

...

ignored

Value

a data frame with 'nsim' columns.


Model summary

Description

Model summary

Usage

## S3 method for class 'ewp'
summary(object, ...)

Arguments

object

ewp model fit

...

ignored

Value

The function 'summary.ewp' computes and returns a list of summary statistics of the fitted ewp model.


Extract estimated variance-covariance matrix

Description

Extract estimated variance-covariance matrix

Usage

## S3 method for class 'ewp'
vcov(object, ...)

Arguments

object

an object of class ewp

...

ignored

Value

a matrix