
Package ‘erboost’
July 22, 2025

Title Nonparametric Multiple Expectile Regression via ER-Boost

Version 1.5

Date 2025-03-24

Depends R (>= 2.12.0), lattice, splines

Description Expectile regression is a nice tool for estimating the conditional expectiles of a re-
sponse variable given a set of covariates. This package implements a regression tree based gradi-
ent boosting estimator for nonparametric multiple expectile regression, pro-
posed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/00949655.2013.876024>. The code is based on the 'gbm' pack-
age originally developed by Greg Ridgeway.

License GPL-3

NeedsCompilation yes

Date/Publication 2025-03-25 16:10:01 UTC

Author Yi Yang [aut, cre] (http://www.math.mcgill.ca/yyang/),
Hui Zou [aut] (http://users.stat.umn.edu/~zouxx019/),
Greg Ridgeway [ctb, cph]

Maintainer Yi Yang <yi.yang6@mcgill.ca>

Repository CRAN

Contents

erboost . 2
erboost.object . 7
erboost.perf . 8
plot.erboost . 9
predict.erboost . 10
relative.influence . 12
summary.erboost . 13

Index 15

1

https://doi.org/10.1080/00949655.2013.876024

2 erboost

erboost ER-Boost Expectile Regression Modeling

Description

Fits ER-Boost Expectile Regression models.

Usage

erboost(formula = formula(data),
distribution = list(name="expectile",alpha=0.5),
data = list(),
weights,
var.monotone = NULL,
n.trees = 3000,
interaction.depth = 3,
n.minobsinnode = 10,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1.0,
cv.folds=0,
keep.data = TRUE,
verbose = TRUE)

erboost.fit(x,y,
offset = NULL,
misc = NULL,
distribution = list(name="expectile",alpha=0.5),
w = NULL,
var.monotone = NULL,
n.trees = 3000,
interaction.depth = 3,
n.minobsinnode = 10,
shrinkage = 0.001,
bag.fraction = 0.5,
train.fraction = 1.0,
keep.data = TRUE,
verbose = TRUE,
var.names = NULL,
response.name = NULL)

erboost.more(object,
n.new.trees = 3000,
data = NULL,
weights = NULL,
offset = NULL,
verbose = NULL)

erboost 3

Arguments

formula a symbolic description of the model to be fit. The formula may include an offset
term (e.g. y~offset(n)+x). If keep.data=FALSE in the initial call to erboost
then it is the user’s responsibility to resupply the offset to erboost.more.

distribution a list with a component name specifying the distribution and any additional pa-
rameters needed. Expectile regression is available and distribution must a
list of the form list(name="expectile",alpha=0.25) where alpha is the ex-
pectile to estimate. The current version’s expectile regression methods do not
handle non-constant weights and will stop.

data an optional data frame containing the variables in the model. By default the vari-
ables are taken from environment(formula), typically the environment from
which erboost is called. If keep.data=TRUE in the initial call to erboost then
erboost stores a copy with the object. If keep.data=FALSE then subsequent
calls to erboost.more must resupply the same dataset. It becomes the user’s
responsibility to resupply the same data at this point.

weights an optional vector of weights to be used in the fitting process. Must be pos-
itive but do not need to be normalized. If keep.data=FALSE in the initial
call to erboost then it is the user’s responsibility to resupply the weights to
erboost.more.

var.monotone an optional vector, the same length as the number of predictors, indicating which
variables have a monotone increasing (+1), decreasing (-1), or arbitrary (0) re-
lationship with the outcome.

n.trees the total number of trees to fit. This is equivalent to the number of iterations and
the number of basis functions in the additive expansion. The default number
is 3000. Users should not always use the default value, but choose the ap-
propriate value of n.trees based on their data. Please see "details" section
below.

cv.folds Number of cross-validation folds to perform. If cv.folds>1 then erboost, in
addition to the usual fit, will perform a cross-validation, calculate an estimate of
generalization error returned in cv.error.

interaction.depth

The maximum depth of variable interactions. 1 implies an additive model, 2
implies a model with up to 2-way interactions, etc. The default value is 3. Users
should not always use the default value, but choose the appropriate value of
interaction.depth based on their data. Please see "details" section below.

n.minobsinnode minimum number of observations in the trees terminal nodes. Note that this is
the actual number of observations not the total weight.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as the
learning rate or step-size reduction.

bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction<1 then running the same model twice will result in similar but
different fits. erboost uses the R random number generator so set.seed can
ensure that the model can be reconstructed. Preferably, the user can save the
returned erboost.object using save.

4 erboost

train.fraction The first train.fraction * nrows(data) observations are used to fit the erboost
and the remainder are used for computing out-of-sample estimates of the loss
function.

keep.data a logical variable indicating whether to keep the data and an index of the data
stored with the object. Keeping the data and index makes subsequent calls to
erboost.more faster at the cost of storing an extra copy of the dataset.

object a erboost object created from an initial call to erboost.

n.new.trees the number of additional trees to add to object. The default number is 3000.

verbose If TRUE, erboost will print out progress and performance indicators. If this
option is left unspecified for erboost.more then it uses verbose from object.

x, y For erboost.fit: x is a data frame or data matrix containing the predictor
variables and y is the vector of outcomes. The number of rows in x must be the
same as the length of y.

offset a vector of values for the offset

misc For erboost.fit: misc is an R object that is simply passed on to the erboost
engine.

w For erboost.fit: w is a vector of weights of the same length as the y.

var.names For erboost.fit: A vector of strings of length equal to the number of columns
of x containing the names of the predictor variables.

response.name For erboost.fit: A character string label for the response variable.

Details

Expectile regression (Newey & Powell 1987) is a nice tool for estimating the conditional expectiles
of a response variable given a set of covariates. This package implements a regression tree based
gradient boosting estimator for nonparametric multiple expectile regression. The code is a modified
version of gbm library (https://cran.r-project.org/package=gbm) originally written by Greg
Ridgeway.

Boosting is the process of iteratively adding basis functions in a greedy fashion so that each addi-
tional basis function further reduces the selected loss function. This implementation closely follows
Friedman’s Gradient Boosting Machine (Friedman, 2001).

In addition to many of the features documented in the Gradient Boosting Machine, erboost of-
fers additional features including the out-of-bag estimator for the optimal number of iterations, the
ability to store and manipulate the resulting erboost object.

Concerning tuning parameters, interaction.depth and n.trees are two of the most important
tuning parameters in erboost. Users should not always use the default values of those two
parameters, instead they should choose the appropriate values of interaction.depth and
n.trees according to their data. For example, if n.trees, which is the maximal number of
trees to fit, is set to be too small, then it is possible that the actual optimal number of trees (which
is best.iter selected by the function erboost.perf in "example" section) for a particular data
exceeds this number, resulting a sub-optimal model. Therefore, users should always fit the model
with a large enough n.trees such that n.trees is greater than the potential optimal number
of trees. The same principle also applies on interaction.depth.

erboost.fit provides the link between R and the C++ erboost engine. erboost is a front-end to
erboost.fit that uses the familiar R modeling formulas. However, model.frame is very slow if

https://cran.r-project.org/package=gbm

erboost 5

there are many predictor variables. For power-users with many variables use erboost.fit. For
general practice erboost is preferable.

Value

erboost, erboost.fit, and erboost.more return a erboost.object.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Jour-
nal of Statistical Computation and Simulation, 84(1), 84-95.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

https://cran.r-project.org/package=gbm

J.H. Friedman (2001). “Greedy Function Approximation: A Gradient Boosting Machine,” Annals
of Statistics 29(5):1189-1232.

J.H. Friedman (2002). “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis
38(4):367-378.

See Also

erboost.object, erboost.perf, plot.erboost, predict.erboost, summary.erboost,

Examples

N <- 200
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- ordered(sample(letters[1:4],N,replace=TRUE),levels=letters[4:1])
X4 <- factor(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]

SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)

introduce some missing values
X1[sample(1:N,size=50)] <- NA
X4[sample(1:N,size=30)] <- NA

data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)

fit initial model

https://cran.r-project.org/package=gbm

6 erboost

erboost1 <- erboost(Y~X1+X2+X3+X4+X5+X6, # formula
data=data, # dataset
var.monotone=c(0,0,0,0,0,0), # -1: monotone decrease,

+1: monotone increase,
0: no monotone restrictions

distribution=list(name="expectile",alpha=0.5),
expectile

n.trees=3000, # number of trees
shrinkage=0.005, # shrinkage or learning rate,

0.001 to 0.1 usually work
interaction.depth=3, # 1: additive model, 2: two-way interactions, etc.
bag.fraction = 0.5, # subsampling fraction, 0.5 is probably best
train.fraction = 0.5, # fraction of data for training,

first train.fraction*N used for training
n.minobsinnode = 10, # minimum total weight needed in each node
cv.folds = 5, # do 5-fold cross-validation
keep.data=TRUE, # keep a copy of the dataset with the object
verbose=TRUE) # print out progress

check performance using a 50% heldout test set
best.iter <- erboost.perf(erboost1,method="test")
print(best.iter)

check performance using 5-fold cross-validation
best.iter <- erboost.perf(erboost1,method="cv")
print(best.iter)

plot the performance
plot variable influence
summary(erboost1,n.trees=1) # based on the first tree
summary(erboost1,n.trees=best.iter) # based on the estimated best number of trees

make some new data
N <- 20
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- ordered(sample(letters[1:4],N,replace=TRUE))
X4 <- factor(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]

Y <- X1**1.5 + 2 * (X2**.5) + mu + rnorm(N,0,sigma)

data2 <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)

predict on the new data using "best" number of trees
f.predict generally will be on the canonical scale
f.predict <- predict.erboost(erboost1,data2,best.iter)

least squares error
print(sum((data2$Y-f.predict)^2))

erboost.object 7

create marginal plots
plot variable X1 after "best" iterations
plot.erboost(erboost1,1,best.iter)
contour plot of variables 1 and 3 after "best" iterations
plot.erboost(erboost1,c(1,3),best.iter)

do another 20 iterations
erboost2 <- erboost.more(erboost1,20,

verbose=FALSE) # stop printing detailed progress

erboost.object ER-Boost Expectile Regression Model Object

Description

These are objects representing fitted erboosts.

Value

initF the "intercept" term, the initial predicted value to which trees make adjustments

fit a vector containing the fitted values on the scale of regression function

train.error a vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the training data

valid.error a vector of length equal to the number of fitted trees containing the value of the
loss function for each boosting iteration evaluated on the validation data

cv.error if cv.folds<2 this component is NULL. Otherwise, this component is a vector
of length equal to the number of fitted trees containing a cross-validated estimate
of the loss function for each boosting iteration

oobag.improve a vector of length equal to the number of fitted trees containing an out-of-bag
estimate of the marginal reduction in the expected value of the loss function.
The out-of-bag estimate uses only the training data and is useful for estimating
the optimal number of boosting iterations. See erboost.perf

trees a list containing the tree structures.

c.splits a list of all the categorical splits in the collection of trees. If the trees[[i]]
component of a erboost object describes a categorical split then the splitting
value will refer to a component of c.splits. That component of c.splits
will be a vector of length equal to the number of levels in the categorical split
variable. -1 indicates left, +1 indicates right, and 0 indicates that the level was
not present in the training data

Structure

The following components must be included in a legitimate erboost object.

8 erboost.perf

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

See Also

erboost

erboost.perf erboost performance

Description

Estimates the optimal number of boosting iterations for a erboost object and optionally plots vari-
ous performance measures

Usage

erboost.perf(object,
plot.it = TRUE,
oobag.curve = FALSE,
overlay = TRUE,
method)

Arguments

object a erboost.object created from an initial call to erboost.

plot.it an indicator of whether or not to plot the performance measures. Setting plot.it=TRUE
creates two plots. The first plot plots object$train.error (in black) and
object$valid.error (in red) versus the iteration number. The scale of the er-
ror measurement, shown on the left vertical axis, depends on the distribution
argument used in the initial call to erboost.

oobag.curve indicates whether to plot the out-of-bag performance measures in a second plot.

overlay if TRUE and oobag.curve=TRUE then a right y-axis is added to the training and
test error plot and the estimated cumulative improvement in the loss function is
plotted versus the iteration number.

method indicate the method used to estimate the optimal number of boosting iterations.
method="OOB" computes the out-of-bag estimate and method="test" uses the
test (or validation) dataset to compute an out-of-sample estimate. method="cv"
extracts the optimal number of iterations using cross-validation if erboost was
called with cv.folds>1

Value

erboost.perf returns the estimated optimal number of iterations. The method of computation
depends on the method argument.

plot.erboost 9

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Jour-
nal of Statistical Computation and Simulation, 84(1), 84-95.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

https://cran.r-project.org/package=gbm

See Also

erboost, erboost.object

plot.erboost Marginal plots of fitted erboost objects

Description

Plots the marginal effect of the selected variables by "integrating" out the other variables.

Usage

S3 method for class 'erboost'
plot(x,

i.var = 1,
n.trees = x$n.trees,
continuous.resolution = 100,
return.grid = FALSE,
...)

Arguments

x a erboost.object fitted using a call to erboost

i.var a vector of indices or the names of the variables to plot. If using indices, the
variables are indexed in the same order that they appear in the initial erboost
formula. If length(i.var) is between 1 and 3 then plot.erboost produces
the plots. Otherwise, plot.erboost returns only the grid of evaluation points
and their average predictions

n.trees the number of trees used to generate the plot. Only the first n.trees trees will
be used

continuous.resolution

The number of equally space points at which to evaluate continuous predictors

https://cran.r-project.org/package=gbm

10 predict.erboost

return.grid if TRUE then plot.erboost produces no graphics and only returns the grid of
evaluation points and their average predictions. This is useful for customizing
the graphics for special variable types or for dimensions greater than 3

... other arguments passed to the plot function

Details

plot.erboost produces low dimensional projections of the erboost.object by integrating out
the variables not included in the i.var argument. The function selects a grid of points and uses the
weighted tree traversal method described in Friedman (2001) to do the integration. Based on the
variable types included in the projection, plot.erboost selects an appropriate display choosing
amongst line plots, contour plots, and lattice plots. If the default graphics are not sufficient
the user may set return.grid=TRUE, store the result of the function, and develop another graphic
display more appropriate to the particular example.

Value

Nothing unless return.grid is true then plot.erboost produces no graphics and only returns the
grid of evaluation points and their average predictions.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Jour-
nal of Statistical Computation and Simulation, 84(1), 84-95.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

https://cran.r-project.org/package=gbm

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(4).

See Also

erboost, erboost.object, plot

predict.erboost Predict method for erboost Model Fits

Description

Predicted values based on an ER-Boost Expectile regression model object

https://cran.r-project.org/package=gbm

predict.erboost 11

Usage

S3 method for class 'erboost'
predict(object,

newdata,
n.trees,
single.tree=FALSE,
...)

Arguments

object Object of class inheriting from (erboost.object)

newdata Data frame of observations for which to make predictions

n.trees Number of trees used in the prediction. n.trees may be a vector in which case
predictions are returned for each iteration specified

single.tree If single.tree=TRUE then predict.erboost returns only the predictions from
tree(s) n.trees

... further arguments passed to or from other methods

Details

predict.erboost produces predicted values for each observation in newdata using the the first
n.trees iterations of the boosting sequence. If n.trees is a vector than the result is a matrix
with each column representing the predictions from erboost models with n.trees[1] iterations,
n.trees[2] iterations, and so on.

The predictions from erboost do not include the offset term. The user may add the value of the
offset to the predicted value if desired.

If object was fit using erboost.fit there will be no Terms component. Therefore, the user has
greater responsibility to make sure that newdata is of the same format (order and number of vari-
ables) as the one originally used to fit the model.

Value

Returns a vector of predictions. By default the predictions are on the scale of f(x).

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

See Also

erboost, erboost.object

12 relative.influence

relative.influence Methods for estimating relative influence

Description

Helper functions for computing the relative influence of each variable in the erboost object.

Usage

relative.influence(object, n.trees)
permutation.test.erboost(object, n.trees)
erboost.loss(y,f,w,offset,dist,baseline)

Arguments

object a erboost object created from an initial call to erboost.
n.trees the number of trees to use for computations.
y, f, w, offset, dist, baseline

For erboost.loss: These components are the outcome, predicted value, obser-
vation weight, offset, distribution, and comparison loss function, respectively.

Details

This is not intended for end-user use. These functions offer the different methods for computing the
relative influence in summary.erboost. erboost.loss is a helper function for permutation.test.erboost.

Value

Returns an unprocessed vector of estimated relative influences.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Jour-
nal of Statistical Computation and Simulation, 84(1), 84-95.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

https://cran.r-project.org/package=gbm

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(5):1189-1232.

See Also

summary.erboost

https://cran.r-project.org/package=gbm

summary.erboost 13

summary.erboost Summary of a erboost object

Description

Computes the relative influence of each variable in the erboost object.

Usage

S3 method for class 'erboost'
summary(object,

cBars=length(object$var.names),
n.trees=object$n.trees,
plotit=TRUE,
order=TRUE,
method=relative.influence,
normalize=TRUE,
...)

Arguments

object a erboost object created from an initial call to erboost.

cBars the number of bars to plot. If order=TRUE the only the variables with the cBars
largest relative influence will appear in the barplot. If order=FALSE then the first
cBars variables will appear in the plot. In either case, the function will return
the relative influence of all of the variables.

n.trees the number of trees used to generate the plot. Only the first n.trees trees will
be used.

plotit an indicator as to whether the plot is generated.

order an indicator as to whether the plotted and/or returned relative influences are
sorted.

method The function used to compute the relative influence. relative.influence is
the default and is the same as that described in Friedman (2001). The other cur-
rent (and experimental) choice is permutation.test.erboost. This method
randomly permutes each predictor variable at a time and computes the associated
reduction in predictive performance. This is similar to the variable importance
measures Breiman uses for random forests, but erboost currently computes us-
ing the entire training dataset (not the out-of-bag observations.

normalize if FALSE then summary.erboost returns the unnormalized influence.

... other arguments passed to the plot function.

Details

This returns the reduction attributeable to each varaible in sum of squared error in predicting the
gradient on each iteration. It describes the relative influence of each variable in reducing the loss
function. See the references below for exact details on the computation.

14 summary.erboost

Value

Returns a data frame where the first component is the variable name and the second is the computed
relative influence, normalized to sum to 100.

Author(s)

Yi Yang <yiyang@umn.edu> and Hui Zou <hzou@stat.umn.edu>

References

Yang, Y. and Zou, H. (2015), “Nonparametric Multiple Expectile Regression via ER-Boost,” Jour-
nal of Statistical Computation and Simulation, 84(1), 84-95.

G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics 31:172-181.

https://cran.r-project.org/package=gbm

J.H. Friedman (2001). "Greedy Function Approximation: A Gradient Boosting Machine," Annals
of Statistics 29(5):1189-1232.

See Also

erboost

https://cran.r-project.org/package=gbm

Index

∗ hplot
plot.erboost, 9
relative.influence, 12
summary.erboost, 13

∗ methods
erboost.object, 7

∗ models
erboost, 2
predict.erboost, 10

∗ nonlinear
erboost, 2
erboost.perf, 8

∗ nonparametric
erboost, 2
erboost.perf, 8

∗ regression
predict.erboost, 10

∗ survival
erboost, 2
erboost.perf, 8

∗ tree
erboost, 2
erboost.perf, 8

erboost, 2, 4, 8–14
erboost.fit, 11
erboost.loss (relative.influence), 12
erboost.more, 3, 4
erboost.object, 3, 5, 7, 8–11
erboost.perf, 5, 7, 8

lattice, 10

model.frame, 4

permutation.test.erboost, 13
permutation.test.erboost

(relative.influence), 12
plot, 10
plot.erboost, 5, 9

predict.erboost, 5, 10

relative.influence, 12, 13

save, 3
summary.erboost, 5, 12, 13

15

	erboost
	erboost.object
	erboost.perf
	plot.erboost
	predict.erboost
	relative.influence
	summary.erboost
	Index

