Type: Package
Title: Complex Pearson Distributions
Version: 0.3.3
Date: 2024-10-04
Maintainer: Silverio Vilchez-Lopez <svilchez@ujaen.es>
Description: Probability mass function, distribution function, quantile function and random generation for the Complex Triparametric Pearson (CTP) and Complex Biparametric Pearson (CBP) distributions developed by Rodriguez-Avi et al (2003) <doi:10.1007/s00362-002-0134-7>, Rodriguez-Avi et al (2004) <doi:10.1007/BF02778271> and Olmo-Jimenez et al (2018) <doi:10.1080/00949655.2018.1482897>. The package also contains maximum-likelihood fitting functions for these models.
Depends: R (≥ 4.0.0)
Imports: hypergeo, Rdpack, dgof, graphics
RdMacros: Rdpack
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2024-10-04 11:10:40 UTC; UJA
Author: Silverio Vilchez-Lopez [aut, cre], Maria Jose Olmo-Jimenez [aut], Jose Rodriguez-Avi [aut]
Repository: CRAN
Date/Publication: 2024-10-04 13:30:06 UTC

The Complex Triparametric Pearson (CTP) Distribution

Description

Probability mass function, distribution function, quantile function and random generation for the Complex Triparametric Pearson (CTP) and Complex Biparametric Pearson (CBP) distributions developed by Rodriguez-Avi et al (2003) doi:10.1007/s00362-002-0134-7, Rodriguez-Avi et al (2004) doi:10.1007/BF02778271 and Olmo-Jimenez et al (2018) doi:10.1080/00949655.2018.1482897. The package also contains maximum-likelihood fitting functions for these models.

Details

The Complex Triparametric Pearson (CTP) distribution with parameters a, b and \gamma has pmf

f(x|a,b,\gamma) = C \Gamma(a+ib+x) \Gamma(a-ib+x) / (\Gamma(\gamma+x) x!), x=0,1,2,...

where i is the imaginary unit, \Gamma(·) the gamma function and

C = \Gamma(\gamma-a-ib) \Gamma(\gamma-a+ib) / (\Gamma(\gamma-2a) \Gamma(a+ib) \Gamma(a-ib))

the normalizing constant.

If a=0 the CTP is a Complex Biparametric Pearson (CBP) distribution, so the pmf of the CBP distribution is obtained.

If b=0 the CTP is an Extended Biparametric Waring (EBW) distribution, so the pmf of the EBW distribution is obtained. In this case, a is call \alpha.

The mean and the variance of the CTP distribution are E(X)=\mu=(a^2+b^2)/(\gamma-2a-1) and Var(X)=E(X)·(E(X)+\gamma-1)/(\gamma-2a-2) so \gamma>2a+2.

It is underdispersed if a<-(\mu+1)/2, equidispersed if a=-(\mu+1)/2 or overdispersed if a>-(\mu+1)/2. In particular, if a>=0 the CTP is always overdispersed.

Author(s)

Maintainer: Silverio Vilchez-Lopez svilchez@ujaen.es

Authors:

References

Jose Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ (2003). “A new class of discrete distributions with complex parameters.” Stat. Pap., 44, 67–88. doi:10.1007/s00362-002-0134-7.

Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ, Olmo-Jimenez MJ (2004). “A triparametric discrete distribution with complex parameters.” Stat. Pap., 45, 81-95. doi:10.1007/BF02778271.

Olmo-Jimenez MJ, Rodriguez-Avi J, Cueva-Lopez V (2018). “A review of the CTP distribution: a comparison with other over- and underdispersed count data models.” Journal of Statistical Computation and Simulation, 88(14), 2684-2706. doi:10.1080/00949655.2018.1482897.

Cueva-Lopez V, Olmo-Jimenez MJ, Rodriguez-Avi J (2021). “An Over and Underdispersed Biparametric Extension of the Waring Distribution.” Mathematics, 9(170), 1-15. doi:10.3390/math9020170.


The Complex Biparametric Pearson (CBP) Distribution

Description

Probability mass function, distribution function, quantile function and random generation for the Complex Biparametric Pearson (CBP) distribution with parameters b and \gamma.

Usage

dcbp(x, b, gamma)

pcbp(q, b, gamma, lower.tail = TRUE)

qcbp(p, b, gamma, lower.tail = TRUE)

rcbp(n, b, gamma)

Arguments

x

vector of (non-negative integer) quantiles.

b

parameter b (real)

gamma

parameter gamma (positive)

q

vector of quantiles.

lower.tail

if TRUE (default), probabilities are P(X<=x), otherwise, P(X>x).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The CBP distribution with parameters b and \gamma has pmf

f(x|b,\gamma) = C \Gamma(ib+x) \Gamma(-ib+x) / (\Gamma(\gamma+x) x!), x=0,1,2,...

where i is the imaginary unit, \Gamma(·) the gamma function and

C = \Gamma(\gamma-ib) \Gamma(\gamma+ib) / (\Gamma(\gamma) \Gamma(ib) \Gamma(-ib))

the normalizing constant.

The CBP is a particular case of the CTP when a=0.

The mean and the variance of the CBP distribution are E(X)=\mu=b^2/(\gamma-1) and Var(X)=\mu(\mu+\gamma-1)/(\gamma-2) so \gamma > 2.

It is always overdispersed.

Value

dcbp gives the pmf, pcbp gives the distribution function, qcbp gives the quantile function and rcbp generates random values.

References

Jose Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ (2003). “A new class of discrete distributions with complex parameters.” Stat. Pap., 44, 67–88. doi:10.1007/s00362-002-0134-7.

See Also

Probability mass function, distribution function, quantile function and random generation for the CTP distribution: dctp, pctp, qctp and rctp. Functions for maximum-likelihood fitting of the CBP distribution: fitcbp.

Examples

# Examples for the function dcbp
dcbp(3,2,5)
dcbp(c(3,4),2,5)

# Examples for the function pcbp
pcbp(3,2,3)
pcbp(c(3,4),2,3)

# Examples for the function qcbp
qcbp(0.5,2,3)
qcbp(c(.8,.9),2,3)

# Examples for the function rcbp
rcbp(10,1,3)


Pearson's Chi-squared Test for Count Data

Description

chisq.test2 performs Pearson chi-squared goodness-of-fit test for count data

Usage

chisq.test2(obs, p.esp, npar = NULL, grouping = FALSE)

Arguments

obs

a numeric vector with the counts

p.esp

a numeric vector with the expected probabilities of the same length of obs. They must sum 1.

npar

an integer specifying the number of parameters of the model. By default npar is NULL, so the degrees of freedom of the chi-squared statistics are the number of classes minus 1.

grouping

a logical indicating whether to group in classes with expected frequency greater than or equal to 5. By default grouping is FALSE.

Value

A list with class "htest" containing the following components:

Examples

set.seed(123)
x <- rctp(500, -1.5, 1, 2)
table(x)
obs <- c(172, 264, 57, 6, 0, 1)
fit <- fitctp(x)
p.esp <- c(dctp(0:(length(obs)-1),fit$coefficients[1],fit$coefficients[2],
           fit$coefficients[3])[1:(length(obs)-1)],1-sum(dctp(0:(length(obs)-1),
           fit$coefficients[1],fit$coefficients[2],fit$coefficients[3])[1:(length(obs)-1)]))
chisq.test2(obs, p.esp)
chisq.test2(obs, p.esp, grouping = TRUE)
chisq.test2(obs, npar= 3, p.esp)

The Complex Triparametric Pearson (CTP) Distribution

Description

Probability mass function, distribution function, quantile function and random generation for the Complex Triparametric Pearson (CTP) distribution with parameters a, b and \gamma.

Usage

dctp(x, a, b, gamma)

pctp(q, a, b, gamma, lower.tail = TRUE)

qctp(p, a, b, gamma, lower.tail = TRUE)

rctp(n, a, b, gamma)

Arguments

x

vector of (non-negative integer) quantiles.

a

parameter a (real)

b

parameter b (real)

gamma

parameter \gamma (positive)

q

vector of quantiles.

lower.tail

if TRUE (default), probabilities are P(X<=x), otherwise, P(X>x).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The CTP distribution with parameters a, b and \gamma has pmf

f(x|a,b,\gamma) = C \Gamma(a+ib+x) \Gamma(a-ib+x) / (\Gamma(\gamma+x) x!), x=0,1,2,...

where i is the imaginary unit, \Gamma(·) the gamma function and

C = \Gamma(\gamma-a-ib) \Gamma(\gamma-a+ib) / (\Gamma(\gamma-2a) \Gamma(a+ib) \Gamma(a-ib))

the normalizing constant.

If a=0 the CTP is a Complex Biparametric Pearson (CBP) distribution, so the pmf of the CBP distribution is obtained. If b=0 the CTP is an Extended Biparametric Waring (EBW) distribution, so the pmf of the EBW distribution is obtained.

The mean and the variance of the CTP distribution are E(X)=\mu=(a^2+b^2)/(\gamma-2a-1) and Var(X)=\mu(\mu+\gamma-1)/(\gamma-2a-2) so \gamma > 2a + 2.

It is underdispersed if a < - (\mu + 1) / 2, equidispersed if a = - (\mu + 1) / 2 or overdispersed if a > - (\mu + 1) / 2. In particular, if a >= 0 the CTP is always overdispersed.

Value

dctp gives the pmf, pctp gives the distribution function, qctp gives the quantile function and rctp generates random values.

If a = 0 the probability mass function, distribution function, quantile function and random generation function for the CBP distribution arise. If b = 0 the probability mass function, distribution function, quantile function and random generation function for the EBW distribution arise.

References

Jose Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ (2003). “A new class of discrete distributions with complex parameters.” Stat. Pap., 44, 67–88. doi:10.1007/s00362-002-0134-7.

Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ, Olmo-Jimenez MJ (2004). “A triparametric discrete distribution with complex parameters.” Stat. Pap., 45, 81-95. doi:10.1007/BF02778271.

Olmo-Jimenez MJ, Rodriguez-Avi J, Cueva-Lopez V (2018). “A review of the CTP distribution: a comparison with other over- and underdispersed count data models.” Journal of Statistical Computation and Simulation, 88(14), 2684-2706. doi:10.1080/00949655.2018.1482897.

Cueva-Lopez V, Olmo-Jimenez MJ, Rodriguez-Avi J (2021). “An Over and Underdispersed Biparametric Extension of the Waring Distribution.” Mathematics, 9(170), 1-15. doi:10.3390/math9020170.

See Also

Functions for maximum-likelihood fitting of the CTP, CBP and EBW distributions: fitctp, fitcbp and fitebw.

Examples

# Examples for the function dctp
dctp(3,1,2,5)
dctp(c(3,4),1,2,5)

# Examples for the function pctp
pctp(3,1,2,3)
pctp(c(3,4),1,2,3)

# Examples for the function qctp
qctp(0.5,1,2,3)
qctp(c(.8,.9),1,2,3)

# Examples for the function rctp
rctp(10,1,1,3)


The Extended Biparametric Waring (EBW) Distribution

Description

Probability mass function, distribution function, quantile function and random generation for the Extended Biparametric Waring (EBW) distribution with parameters \alpha and \gamma (or \rho).

Usage

debw(x, alpha, gamma, rho)

pebw(q, alpha, gamma, rho, lower.tail = TRUE)

qebw(p, alpha, gamma, rho, lower.tail = TRUE)

rebw(n, alpha, gamma, rho, lower.tail = TRUE)

Arguments

x

vector of (non-negative integer) quantiles.

alpha

parameter alpha (real)

gamma

parameter \gamma (positive)

rho

parameter rho (positive)

q

vector of quantiles.

lower.tail

if TRUE (default), probabilities are P(X<=x), otherwise, P(X>x).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The EBW distribution with parameters \alpha and \gamma has pmf

f(x|a,\alpha,\gamma) = C \Gamma(\alpha+x)^2 / (\Gamma(\gamma+x) x!), x=0,1,2,...

where \Gamma(·) is the gamma function and

C = \Gamma(\gamma-\alpha^2 / (\Gamma(\alpha)^2 \Gamma(\gamma-2a))

the normalizing constant.

There is an alternative parametrization in terms of \alpha and \rho=\gamma-2\alpha>0 when \alpha>0. So, introduce only \alpha and \gamma or \alpha and \rho, depending on the parametrization you wish to use.

The mean and the variance of the EBW distribution are E(X)=\mu=\alpha^2/(\gamma-2\alpha-1) and Var(X)=\mu(\mu+\gamma-1)/(\gamma-2\alpha-2) so \gamma > 2a + 2.

It is underdispersed if \alpha < - (\mu + 1) / 2, equidispersed if \alpha = - (\mu + 1) / 2 or overdispersed if \alpha > - (\mu + 1) / 2. In particular, if \alpha >= -0.5 the EBW is overdispersed, whereas if \alpha < -1 the EBW is underdispersed. In the case -1 < \alpha <= -0.5, the EBW may be under-, equi- or overdispersed depending on the value of \gamma.

Value

debw gives the pmf, pebw gives the distribution function, qebw gives the quantile function and rebw generates random values.

If \alpha > 0 the probability mass function, distribution function, quantile function and random generation function for the UGW(\alpha,\alpha,\rho) distribution arise.

If \alpha < 0 the probability mass function, distribution function, quantile function and random generation function for the CTP(\alpha,0,\gamma) distribution arise.

References

Jose Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ (2003). “A new class of discrete distributions with complex parameters.” Stat. Pap., 44, 67–88. doi:10.1007/s00362-002-0134-7.

Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ, Olmo-Jimenez MJ (2004). “A triparametric discrete distribution with complex parameters.” Stat. Pap., 45, 81-95. doi:10.1007/BF02778271.

Olmo-Jimenez MJ, Rodriguez-Avi J, Cueva-Lopez V (2018). “A review of the CTP distribution: a comparison with other over- and underdispersed count data models.” Journal of Statistical Computation and Simulation, 88(14), 2684-2706. doi:10.1080/00949655.2018.1482897.

See Also

Functions for maximum-likelihood fitting of the CTP and CBP distributions: fitctp and fitcbp.

Examples

# Examples for the function dctp
debw(3,1,rho=5)
debw(c(3,4),2,rho=5)

# Examples for the function pebw
pebw(3,2,rho=5)
pebw(c(3,4),2,rho=5)

# Examples for the function qebw
qebw(0.5,-2.1,gamma=0.1)
qebw(c(.8,.9),-2.1,gamma=0.1)
qebw(0.5,2,rho=5)
qebw(c(.8,.9),2,rho=5)

# Examples for the function rebw
rebw(10,2,rho=5)
rebw(10,-2.1,gamma=5)


Maximum-likelihood fitting of the CBP distribution

Description

Maximum-likelihood fitting of the Complex Biparametric Pearson (CBP) distribution with parameters b and \gamma. Generic methods are print, summary, coef, logLik, AIC, BIC and plot.

Usage

fitcbp(x, bstart = NULL, gammastart = NULL, method = "L-BFGS-B", control = list(), ...)

Arguments

x

A numeric vector of length at least one containing only finite values.

bstart

A starting value for the parameter b; by default NULL.

gammastart

A starting value for the parameter \gamma>0; by default NULL.

method

The method to be used in fitting the model. See 'Details'.

control

A list of parameters for controlling the fitting process.

...

Additional parameters.

Details

If the starting values of the parameters b and \gamma are omitted (default option), they are computing by the method of moments (if possible; otherwise they must be entered).

The default method is "L-BFGS-B" (see details in optim function), but non-linear minimization (nlm) or those included in the optim function ("Nelder-Mead", "BFGS", "CG" and "SANN") may be used.

Standard error (SE) estimates for b and \gamma are provided by the default method; otherwise, SE for \gamma_0 where \gamma=exp{(\gamma_0}) is computed.

Value

An object of class 'fitCBP' is a list containing the following components:

Generic functions:

References

Jose Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ (2003). “A new class of discrete distributions with complex parameters.” Stat. Pap., 44, 67–88. doi:10.1007/s00362-002-0134-7.

See Also

Plot of observed and theoretical frequencies for a CBP fit: plot.fitCBP

Maximum-likelihood fitting for the CTP distribution: fitctp.

Maximum-likelihood fitting for the EBW distribution: fitebw.

Examples

set.seed(123)
x <- rcbp(500, 1.75, 3.5)
fitcbp(x)
summary(fitcbp(x, bstart = 1.1, gammastart = 3))

Maximum-likelihood fitting of the CTP distribution

Description

Maximum-likelihood fitting of the Complex Triparametric Pearson (CTP) distribution with parameters a, b and \gamma. Generic methods are print, summary, coef, logLik, AIC, BIC and plot.

Usage

fitctp(x, astart = NULL, bstart = NULL, gammastart = NULL, 
          method = "L-BFGS-B", control = list(), ...)

Arguments

x

A numeric vector of length at least one containing only finite values.

astart

A starting value for the parameter a>0; by default NULL.

bstart

A starting value for the parameter b; by default NULL.

gammastart

A starting value for the parameter \gamma>max(0,2a); by default NULL.

method

The method to be used in fitting the model. See 'Details'.

control

A list of parameters for controlling the fitting process.

...

Additional parameters.

Details

If the starting values of the parameters a, b and \gamma are omitted (default option), they are computing by the method of moments (if possible; otherwise they must be entered).

The default method is "L-BFGS-B" (see details in optim function), but non-linear minimization (nlm) or those included in the optim function ("Nelder-Mead", "BFGS", "CG" and "SANN") may be used.

Standard error (SE) estimates for a, b and \gamma are provided by the default method; otherwise, SE for \gamma_0 where \gamma=exp(\gamma_0) is computed.

Value

An object of class 'fitCTP' is a list containing the following components:

Generic functions:

References

Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ, Olmo-Jimenez MJ (2004). “A triparametric discrete distribution with complex parameters.” Stat. Pap., 45, 81-95. doi:10.1007/BF02778271.

Olmo-Jimenez MJ, Rodriguez-Avi J, Cueva-Lopez V (2018). “A review of the CTP distribution: a comparison with other over- and underdispersed count data models.” Journal of Statistical Computation and Simulation, 88(14), 2684-2706. doi:10.1080/00949655.2018.1482897.

See Also

Plot of observed and theoretical frequencies for a CTP fit: plot.fitCTP

Maximum-likelihood fitting for the CBP distribution: fitcbp.

Maximum-likelihood fitting for the EBW distribution: fitebw.

Examples

set.seed(123)
x <- rctp(500, -0.5, 1, 2)
fitctp(x)
summary(fitctp(x, astart = 1, bstart = 1.1, gammastart = 3))

Maximum-likelihood fitting of the EBW distribution

Description

Maximum-likelihood fitting of the Extended Biparametric Waring (EBW) distribution with parameters \alpha, \rho and \gamma. Generic methods are print, summary, coef, logLik, AIC, BIC and plot. The method to be used in fitting the model is "L-BFGS-B" which allows constraints for each variable (see details in optim funtion).

Usage

fitebw(x, alphastart = NULL, rhostart = NULL, gammastart = NULL, 
          method = "L-BFGS-B", control = list(),...)

Arguments

x

A numeric vector of length at least one containing only finite values.

alphastart

A starting value for the parameter \alpha; by default NULL.

rhostart

A starting value for the parameter \rho>0; by default NULL.

gammastart

A starting value for the parameter \gamma>max(0,2\alpha); by default NULL.

method

The method to be used in fitting the model. The default method is "L-BFGS-B" (optim).

control

A list of parameters for controlling the fitting process.

...

Additional parameters.

Details

If the starting value for \alpha is positive, the parameterization (\alpha,\rho) is used; otherwise, the parameterization (\alpha,\gamma) is used.

If the starting values of the parameters \alpha, \gamma or \rho are omitted (default option), they are computing by the method of moments (if possible; otherwise they must be entered).

The default method is "L-BFGS-B" (see details in optim function), but non-linear minimization (nlm) or those included in the optim function ("Nelder-Mead", "BFGS", "CG" and "SANN") may be used.

Standard error (SE) estimates for \alpha, \gamma or \rho are provided by the default method; otherwise, SE for \alpha_0 and \gamma_0 where \alpha=-exp(\alpha_0) and \gamma=exp(\gamma_0) (or for \alpha_0 and \rho_0 where \alpha=exp(\alpha_0) and \rho=exp(\rho_0)) are computed.

Value

An object of class 'fitEBW' is a list containing the following components:

Generic functions:

References

Cueva-Lopez V, Olmo-Jimenez MJ, Rodriguez-Avi J (2021). “An Over and Underdispersed Biparametric Extension of the Waring Distribution.” Mathematics, 9(170), 1-15. doi:10.3390/math9020170.

See Also

Plot of observed and theoretical frequencies for a EBW fit: plot.fitEBW

Maximum-likelihood fitting for the CTP distribution: fitctp.

Maximum-likelihood fitting for the CBP distribution: fitcbp.

Examples

set.seed(123)
x <- rebw(500, 2, rho = 5)
fitebw(x)
summary(fitebw(x, alphastart = 1, rhostart = 5))

Plot of observed and theoretical frequencies for a CBP fit

Description

Plot of observed and theoretical frequencies for a CBP fit

Usage

## S3 method for class 'fitCBP'
plot(x, plty = "FREQ", maxValue = NULL, ...)

Arguments

x

An object of class 'fitCBP'

plty

Plot type to be shown. Default is "FREQ" which shows the observed and theoretical frequencies for each value of the variable; "CDF" and "PP" are also available for plotting the empirical and theoretical cumulative distribution functions or the theoretical cumulative probabilities against the empirical cumulative probabilities, respectively.

maxValue

maxValue you want to appear in the plot

...

Additional parameters.

Examples

set.seed(123)
x <- rcbp(500, 1.75, 3.5)
fit <- fitcbp(x)
plot(fit)
plot(fit, plty = "CDF")
plot(fit, plty = "PP")
 

Plot of observed and theoretical frequencies for a CTP fit

Description

Plot of observed and theoretical frequencies for a CTP fit

Usage

## S3 method for class 'fitCTP'
plot(x, plty = "FREQ", maxValue = NULL, ...)

Arguments

x

An object of class 'fitCTP'

plty

Plot type to be shown. Default is "FREQ" which shows the observed and theoretical frequencies for each value of the variable; "CDF" and "PP" are also available for plotting the empirical and theoretical cumulative distribution functions or the theoretical cumulative probabilities against the empirical cumulative probabilities, respectively.

maxValue

maxValue you want to appear in the plot

...

Additional parameters.

Examples

set.seed(123)
x <- rctp(500, -0.5, 1, 2)
fit <- fitctp(x)
plot(fit)
plot(fit, plty = "CDF")
plot(fit, plty = "PP")


Plot of observed and theoretical frequencies for a EBW fit

Description

Plot of observed and theoretical frequencies for a EBW fit

Usage

## S3 method for class 'fitEBW'
plot(x, plty = "FREQ", maxValue = NULL, ...)

Arguments

x

An object of class 'fitEBW'

plty

Plot type to be shown. Default is "FREQ" which shows the observed and theoretical frequencies for each value of the variable; "CDF" and "PP" are also available for plotting the empirical and theoretical cumulative distribution functions or the theoretical cumulative probabilities against the empirical cumulative probabilities, respectively.

maxValue

maxValue you want to appear in the plot

...

Additional parameters.

Examples

set.seed(123)
x <- rebw(500, -0.25, 1)
fit <- fitebw(x)
plot(fit)
plot(fit, plty = "CDF")
plot(fit, plty = "PP")


Variance decomposition for a EBW fit

Description

One of the main drawbacks of the Univariate Generalized Waring (UGW) distribution with parameters a, k and \rho is that the first two parameters are interchangeable, so it is not possible to distinguish the variance components 'liability' and 'proneness' without additional information. To solve this problem, an EBW distribution (where these components are uniquely identifiable) can be used since, given a UGW distribution, there always exists an EBW close to it.

Usage

varcomp(object, ...)

Arguments

object

An object of class 'fitEBW'

...

Additional parameters.

Value

A data frame with the variance components (randomness, liability and proneness) in absolute and relative terms.

Examples


set.seed(123)
x <- rebw(500, 2, rho = 5)
fit <- fitebw(x, alphastart = 1, rhostart = 5)
varcomp(fit)