Version: | 1.42 |
Title: | An Implementation of Conjoint Analysis Method |
Description: | This is a simple R package that allows to measure the stated preferences using traditional conjoint analysis method. |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
URL: | https://github.com/packagesR/conjoint |
Imports: | AlgDesign, stats, grDevices, graphics, fpc, broom, ggplot2, cluster, ggfortify |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Author: | Andrzej Bak [aut], Tomasz Bartlomowicz [aut, cre] |
Maintainer: | Tomasz Bartlomowicz <tomasz.bartlomowicz@ue.wroc.pl> |
Repository: | CRAN |
Date: | 2025-06-22 |
Packaged: | 2025-06-09 21:58:49 UTC; tomasz.bartlomowicz |
Date/Publication: | 2025-06-09 22:20:02 UTC |
Function Conjoint sums up the main results of conjoint analysis
Description
Function Conjoint is a combination of following conjoint pakage's functions: caPartUtilities
, caUtilities
and caImportance
. Therefore it sums up the main results of conjoint analysis. Function Conjoint returns matrix of partial utilities for levels of variables for respondents, vector of utilities for attribute's levels and vector of percentage attributes' importance with corresponding chart (barplot). The sum of importance should be 100
Usage
Conjoint(y, x, z, y.type)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
z |
matrix of levels names |
y.type |
type of data preferences (possible values: "score" for preferences as rating data, "rank" for preferences as ranking data; default value: y.type="score") |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caImportance
, caPartUtilities
and caUtilities
Examples
#Example 1
library(conjoint)
data(ice)
print("Preferences of all respondents (preferences as ranking data):")
Conjoint(ipref,iprof,ilevn,y.type="rank")
#Example 2
library(conjoint)
data(ice)
ipref=caRankToScore(ipref)
print("Preferences of all respondents (preferences converted into rating data):")
Conjoint(ipref,iprof,ilevn,y.type="score")
#Example 3
library(conjoint)
data(journey)
print("Preferences of all respondents (preferences as default - rating data):")
Conjoint(jpref,jprof,jlevn)
#Example 4
library(conjoint)
data(tea)
print("Preferences of all respondents (preferences as rating data):")
Conjoint(tprefm,tprof,tlevn,y.type="score")
#Example 5
library(conjoint)
data(tea)
print("Preferences of first respondent (preferences as default - rating data):")
Conjoint(tprefm[1,],tprof,tlevn)
#Example 6
library(conjoint)
data(tea)
print("Preferences of group of 5 respondents (preferences as rating data):")
Conjoint(tprefm[11:15,],tprof,tlevn,y.type="score")
Function ShowAllSimulations sums up the results of all simulation functions
Description
Function ShowAllSimulations sums up the results of all simulation functions. It's a combination of following conjoint pakage's functions: caMaxUtility
, caBTL
and caLogit
. Therefore it sums up the main results of simulation using conjoint analysis method. Function ShowAllSimulations returns three vectors of percentage participations using maximum utility, BTL and logit models. The sum of importance for every vector should be 100%.
Usage
ShowAllSimulations(sym, y, x)
Arguments
sym |
matrix of simulation profiles |
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caBTL
, caLogit
and caMaxUtility
Examples
#Example 1
library(conjoint)
data(tea)
ShowAllSimulations(tsimp,tpref,tprof)
#Example 2
library(conjoint)
data(chocolate)
ShowAllSimulations(csimp,cpref,cprof)
#Example 3
#library(conjoint)
#data(journey)
#ShowAllSimulations(jsimp,jpref,jprof)
Function ShowAllUtilities sums up all results of utility measures
Description
Function ShowAllUtilities is a combination of following conjoint pakage's functions: caPartUtilities
, caTotalUtilities
, caUtilities
and caImportance
. Function ShowAllUtilities returns: matrix of partial utilities (basic matrix of utilities with the intercept), matrix of total utilities for n profiles and all respondents, vector of utilities for attribute's levels and vector of percentage attributes' importance, with sum of importance. The sum of importance should be 100%.
Usage
ShowAllUtilities(y, x, z)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
z |
matrix of levles names |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caImportance
, caPartUtilities
, caTotalUtilities
and caUtilities
Examples
#Example 1
library(conjoint)
data(tea)
ShowAllUtilities(tprefm,tprof,tlevn)
#Example 2
library(conjoint)
data(chocolate)
ShowAllUtilities(cprefm,cprof,clevn)
Function caBTL estimates participation (market share) of simulation profiles
Description
Function caBTL estimates participation of simulation profiles using probabilistic model BTL (Bradley-Terry-Luce). Function returns vector of percentage participations. The sum of participation should be 100%.
Usage
caBTL(sym, y, x)
Arguments
sym |
matrix of simulation profiles |
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caLogit
, caMaxUtility
and ShowAllSimulations
Examples
#Example 1
library(conjoint)
data(tea)
simutil<-caBTL(tsimp,tpref,tprof)
print("Percentage participation of profiles: ", quote=FALSE)
print(simutil)
#Example 2
library(conjoint)
data(chocolate)
simutil<-caBTL(csimp,cpref,cprof)
print("Percentage participation of profiles:", quote=FALSE)
print(simutil)
#Example 3
library(conjoint)
data(chocolate)
ShowAllSimulations(csimp,cpref,cprof)
#Example 4
#library(conjoint)
#data(journey)
#ShowAllSimulations(jsimp,jpref,jprof)
Function caEncodedDesign encodes full or fractional factorial design
Description
Function caEncodedDesign encodes full or fractional factorial design. Function converts design of experiment to matrix of profiles.
Usage
caEncodedDesign(design)
Arguments
design |
design of experiment returned by caFactorialDesign function |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caFactorialDesign
and caRecreatedDesign
Examples
#Example 1
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="orthogonal")
print(design)
code=caEncodedDesign(design)
print(code)
print(cor(code))
Function caFactorialDesign creates full or fractional factorial design
Description
Function caFactorialDesign creates full or fractional factorial design. Function can return orthogonal factorial design.
Usage
caFactorialDesign(data, type="null", cards=NA, seed=123)
Arguments
data |
experiment whose design consists of two or more factors, each with with 2 or more discrete levels |
type |
type of factorial design (possible values: "full", "fractional", "ca", "aca", "orthogonal"; default value: type="null") |
cards |
number of experimental runs |
seed |
seed settings (default value: seed=123) |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caEncodedDesign
and caRecreatedDesign
Examples
#Example 1
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="full")
print(design)
print(cor(caEncodedDesign(design)))
#Example 2
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment)
print(design)
print(cor(caEncodedDesign(design)))
#Example 3
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="orthogonal")
print(design)
print(cor(caEncodedDesign(design)))
#Example 4
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="fractional",cards=16)
print(design)
print(cor(caEncodedDesign(design)))
#Example 5
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="fractional")
print(design)
print(cor(caEncodedDesign(design)))
#Example 6
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="ca")
print(design)
print(cor(caEncodedDesign(design)))
#Example 7
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="aca")
print(design)
print(cor(caEncodedDesign(design)))
Function caImportance calculates importance of all attributes
Description
Function caImportance calculates importance of all attributes. Function returns vector of percentage attributes' importance and corresponding chart (barplot). The sum of importance should be 100%.
Usage
caImportance(y, x)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
Examples
#Example 1
library(conjoint)
data(tea)
imp<-caImportance(tprefm,tprof)
print("Importance summary: ", quote=FALSE)
print(imp)
print(paste("Sum: ", sum(imp)), quote=FALSE)
#Example 2
library(conjoint)
data(chocolate)
imp<-caImportance(cprefm,cprof)
print("Importance summary: ", quote=FALSE)
print(imp)
print(paste("Sum: ", sum(imp)), quote=FALSE)
#Example 3
library(conjoint)
data(journey)
imp<-caImportance(jpref[1,],jprof)
print("Importance summary of first respondent: ", quote=FALSE)
print(imp)
print(paste("Sum: ", sum(imp)), quote=FALSE)
#Example 4
library(conjoint)
data(journey)
imp<-caImportance(jpref[1:5,],jprof)
print("Importance summary of group of 5 respondents: ", quote=FALSE)
print(imp)
print(paste("Sum: ", sum(imp)), quote=FALSE)
Function caLogit estimates participation (market share) of the simulation profiles
Description
Function caLogit estimates participation of simulation profiles using logit model. Function returns vector of percentage participations. The sum of participation should be 100%.
Usage
caLogit(sym, y, x)
Arguments
sym |
matrix of simulation profiles |
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caBTL
, caMaxUtility
and ShowAllSimulations
Examples
#Example 1
library(conjoint)
data(tea)
simutil<-caLogit(tsimp,tpref,tprof)
print("Percentage participation of profiles: ", quote=FALSE)
print(simutil)
#Example 2
library(conjoint)
data(chocolate)
simutil<-caLogit(csimp,cpref,cprof)
print("Percentage participation of profiles:", quote=FALSE)
print(simutil)
#Example 3
library(conjoint)
data(chocolate)
ShowAllSimulations(csimp,cpref,cprof)
#Example 4
#library(conjoint)
#data(journey)
#ShowAllSimulations(jsimp,jpref,jprof)
Function caMaxUtility estimates participation (market share) of simulation profiles
Description
Function caMaxUtility estimates participation of simulation profiles using model of maximum utility ("first position"). Function returns vector of percentage participations. The sum of participation should be 100%.
Usage
caMaxUtility(sym, y, x)
Arguments
sym |
matrix of simulation profiles |
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caBTL
, caLogit
and ShowAllSimulations
Examples
#Example 1
library(conjoint)
data(tea)
simutil<-caMaxUtility(tsimp,tpref,tprof)
print("Percentage participation of profiles: ", quote=FALSE)
print(simutil)
#Example 2
library(conjoint)
data(chocolate)
simutil<-caMaxUtility(csimp,cpref,cprof)
print("Percentage participation of profiles:", quote=FALSE)
print(simutil)
#Example 3
library(conjoint)
data(chocolate)
ShowAllSimulations(csimp,cpref,cprof)
#Example 4
#library(conjoint)
#data(journey)
#ShowAllSimulations(jsimp,jpref,jprof)
Function caModel estimates parameters of conjoint analysis model
Description
Function caModel estimates parameters of conjoint analysis model for one respondent. Function caModel returns vector of estimated parameters of traditional conjoint analysis model.
Usage
caModel(y, x)
Arguments
y |
vector of preferences, vector should be like single profil of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
Examples
#Example 1
library(conjoint)
data(tea)
model=caModel(tprefm[1,], tprof)
print(model)
#Example 2
library(conjoint)
data(chocolate)
model=caModel(cprefm[1,], cprof)
print(model)
#Example 3
library(conjoint)
data(journey)
model=caModel(jpref[306,], jprof)
print(model)
Function caPartUtilities calculates matrix of individual utilities
Description
Function caPartUtilities calculates matrix of individual utilities for respondents. Function returns matrix of partial utilities (parameters of conjoint model regresion) for all artificial variables including parameters for reference levels for respondents (with intercept on first place).
Usage
caPartUtilities(y, x, z)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
z |
vector of levels names |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caUtilities
, caTotalUtilities
and ShowAllUtilities
Examples
#Example 1
library(conjoint)
data(tea)
uslall<-caPartUtilities(tprefm,tprof,tlevn)
print(uslall)
#Example 2
library(conjoint)
data(chocolate)
uslall<-caPartUtilities(cprefm,cprof,clevn)
print(head(uslall))
#Example 3
library(conjoint)
data(journey)
usl<-caPartUtilities(jpref[1,],jprof,jlevn)
print("Individual (partial) utilities for first respondent:")
print(usl)
Function caRankToScore transforms ranking data into rating data design
Description
Function caRankToScore transforms ranking data into rating data design necessary for conjoint model.
Usage
caRankToScore(y.rank)
Arguments
y.rank |
matrix of preferences in ranking format |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
Examples
#Example 1
library(conjoint)
data(ice)
print(ilevn)
print(iprof)
print(ipref)
preferences<-caRankToScore(ipref)
print(preferences)
Conjoint(preferences, iprof, ilevn)
Function caRecreatedDesign reconstructs factorial design
Description
Function caRecreatedDesign reconstructs the factorial design on the basis of arguments in the form of: a vector of variables (attributes) names, a vector of the number of variables' levels, a vector of variable level names and the list of numbers of the reconstructed profiles.
Usage
caRecreatedDesign(attr.names,lev.numbers,z,prof.numbers)
Arguments
attr.names |
a vector of variables (attributes) names |
lev.numbers |
a vector of the number of variables' levels |
z |
a vector of variable level names |
prof.numbers |
list of numbers of the reconstructed profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caFactorialDesign
and caEncodedDesign
Examples
#Example 1
library(conjoint)
attrNames<-c("price","variety","kind","aroma")
levNumbers<-c(3,3,3,2)
z<-c("low","medium","high","black","green","red","bags","granulated","leafy","yes","no")
profNumbers<-c(3,4,14,20,27,29,33,35,39,43,46,50,51)
design<-caRecreatedDesign(attrNames,levNumbers,z,profNumbers)
print(design)
print(design$dnumbers)
print(design$dnames)
Function caSegmentation divides respondents on clusters
Description
Function caSegmentation divides respondents on n clusters (segments) using k-means method (function kmeans, package stats). There are two data sets used - matrix or vector of preferences and matrix of profiles.
Usage
caSegmentation(y, x, c)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
c |
number of clusters (optional), default value c=2 |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
Examples
#Example 1
library(conjoint)
require(fpc)
data(tea)
segments<-caSegmentation(tprefm,tprof)
print(segments$seg)
plotcluster(segments$util,segments$sclu)
#Example 2
library(conjoint)
require(fpc)
data(tea)
segments<-caSegmentation(tpref,tprof,3)
print(segments$seg)
plotcluster(segments$util,segments$sclu)
#example 3
library(conjoint)
require(fpc)
require(broom)
require(ggplot2)
data(tea)
segments<-caSegmentation(tprefm,tprof,3)
dcf<-discrcoord(segments$util,segments$sclu)
assignments<-augment(segments$segm,dcf$proj[,1:2])
ggplot(assignments)+geom_point(aes(x=X1,y=X2,color= .cluster))+labs(color="Cluster Assignment",
title="K-Means Clustering Results")
#Example 4
library(conjoint)
require(ggfortify)
data(tea)
segments<-caSegmentation(tpref,tprof,3)
print(segments$seg)
util<-as.data.frame(segments$util)
set.seed(123)
ggplot2::autoplot(kmeans(util,3),data=util,label=TRUE,label.size=4,frame=TRUE)
#Example 5
#library(conjoint)
#require(ggfortify)
#require(cluster)
#data(tea)
#segments<-caSegmentation(tpref,tprof,3)
#print(segments$seg)
#util<-as.data.frame(segments$util)
#ggplot2::autoplot(pam(util,3),label=TRUE,label.size=4,frame=TRUE,frame.type='norm')
Function caTotalUtilities calculates matrix of theoreticall total utilities
Description
Function caTotalUtilities calculates matrix of theoreticall total utilities for respondents. Function returns matrix of total utilities for all profiles.
Usage
caTotalUtilities(y, x)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caUtilities
, caPartUtilities
and ShowAllUtilities
Examples
#Example 1
library(conjoint)
data(tea)
uslall<-caTotalUtilities(tprefm,tprof)
print(uslall)
#Example 2
library(conjoint)
data(chocolate)
uslall<-caTotalUtilities(cprefm,cprof)
print(uslall)
#Example 3
library(conjoint)
data(journey)
usl<-caTotalUtilities(jpref[1,],jprof)
print("Individual (total) utilities for first respondent:")
print(usl)
Function caUtilities calculates utilities of levels of atrtributes
Description
Function caUtilities calculates utilities of attribute's levels. Function returns vector of utilities.
Usage
caUtilities(y,x,z)
Arguments
y |
matrix of preferences |
x |
matrix of profiles |
z |
matrix of levels names |
Author(s)
Andrzej Bak andrzej.bak@ue.wroc.pl,
Tomasz Bartlomowicz tomasz.bartlomowicz@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics, Poland
References
Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.
Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.
Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.
SPSS 6.1 Categories (1994), SPSS Inc., Chicago.
See Also
caPartUtilities
and caTotalUtilities
Examples
#Example 1
library(conjoint)
data(tea)
uslall<-caUtilities(tprefm,tprof,tlevn)
print(uslall)
#Example 2
library(conjoint)
data(chocolate)
uslall<-caUtilities(cprefm,cprof,clevn)
print(uslall)
#Example 3
library(conjoint)
data(journey)
usl<-caUtilities(jpref[1,],jprof,jlevn)
print("Individual utilities for first respondent:")
print(usl)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by W. Nowak in 2000.
Usage
data(chocolate)
Format
cpref
Vector of preferences (length 1392).
cprefm
Matrix of preferences (87 respondents and 16 profiles).
cprof
Matrix of profiles (5 attributes and 16 profiles).
clevn
Character vector of names for the attributes' levels.
csimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(chocolate)
print(cprefm)
print(cprof)
print(clevn)
print(csimp)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by W. Nowak in 2000.
Usage
data(czekolada)
Format
czpref
Vector of preferences (length 1392).
czprefm
Matrix of preferences (87 respondents and 16 profiles).
czprof
Matrix of profiles (5 attributes and 16 profiles).
czlevn
Character vector of names for the attributes' levels.
czsimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(czekolada)
print(czprefm)
print(czprof)
print(czlevn)
print(czsimp)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by M. Baran in 2007.
Usage
data(herbata)
Format
hpref
Vector of preferences (length 1300).
hprefm
Matrix of preferences (100 respondents and 13 profiles).
hprof
Matrix of profiles (4 attributes and 13 profiles).
hlevn
Character vector of names for the attributes' levels.
hsimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(herbata)
print(hprefm)
print(hprof)
print(hlevn)
print(hsimp)
Sample data for conjoint analysis
Description
Sample artificial data in rank mode. Ranking (rank) data needs conversion into rating (score) data.
Usage
data(ice)
Format
ipref
Matrix of preferences (6 respondents and 9 profiles).
iprof
Matrix of profiles (4 attributes and 9 profiles).
ilevn
Character vector of names for the attributes' levels.
Examples
library(conjoint)
data(ice)
print(ipref)
print(iprof)
print(ilevn)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by M. Gordzicz in 2015/2016.
Usage
data(journey)
Format
jpref
Matrix of preferences (306 respondents and 14 profiles).
jprof
Matrix of profiles (4 attributes and 14 profiles).
jlevn
Character vector of names for the attributes' levels.
jsimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(journey)
print(jpref)
print(jprof)
print(jlevn)
print(jsimp)
Sample data for conjoint analysis
Description
Sample artificial data in rank mode. Ranking (rank) data needs conversion into rating (score) data.
Usage
data(lody)
Format
lpref
Matrix of preferences (6 respondents and 9 profiles).
lprof
Matrix of profiles (4 attributes and 9 profiles).
llevn
Character vector of names for the attributes' levels.
Examples
library(conjoint)
data(lody)
print(lpref)
print(lprof)
print(llevn)
Sample data for conjoint analysis
Description
Sample artificial data in score mode. Rating (score) data does not need any conversion.
Usage
data(plyty)
Format
ppref
Matrix of preferences (6 respondents and 8 profiles).
pprof
Matrix of profiles (3 attributes and 8 profiles).
plevn
Character vector of names for the attributes' levels.
Examples
library(conjoint)
data(plyty)
print(ppref)
print(pprof)
print(plevn)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by M. Baran in 2007.
Usage
data(tea)
Format
tpref
Vector of preferences (length 1300).
tprefm
Matrix of preferences (100 respondents and 13 profiles).
tprof
Matrix of profiles (4 attributes and 13 profiles).
tlevn
Character vector of names for the attributes' levels.
tsimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(tea)
print(tprefm)
print(tprof)
print(tlevn)
print(tsimp)
Sample data for conjoint analysis
Description
Sample data in score mode. Rating (score) data does not need any conversion. Data collected in the survey conducted by M. Gordzicz in 2015/2016.
Usage
data(wycieczka)
Format
wpref
Matrix of preferences (306 respondents and 14 profiles).
wprof
Matrix of profiles (4 attributes and 14 profiles).
wlevn
Character vector of names for the attributes' levels.
wsimp
Matrix of simulation profiles.
Examples
library(conjoint)
data(wycieczka)
print(wpref)
print(wprof)
print(wlevn)
print(wsimp)