
Package ‘common’
July 22, 2025

Type Package

Title Solutions for Common Problems in Base R

Version 1.1.3

Maintainer David Bosak <dbosak01@gmail.com>

Description Contains functions for solving commonly encountered problems while
programming in R. This package is intended to provide a lightweight
supplement to Base R, and will be useful for almost any R user.

License CC0

Encoding UTF-8

URL https://common.r-sassy.org, https://github.com/dbosak01/common

BugReports https://github.com/dbosak01/common/issues

Depends R (>= 3.6.0)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), glue, box, rstudioapi

Enhances base

Imports utils

Config/testthat/edition 3

RoxygenNote 7.3.1

VignetteBuilder knitr

NeedsCompilation no

Author David Bosak [aut, cre],
Duong Tran [ctb]

Repository CRAN

Date/Publication 2024-04-05 15:23:06 UTC

Contents
changed . 2
copy.attributes . 4
dir.find . 5

1

https://common.r-sassy.org
https://github.com/dbosak01/common
https://github.com/dbosak01/common/issues

2 changed

file.find . 7
find.names . 8
labels.data.frame . 10
roundup . 11
sort.data.frame . 12
source.all . 15
spaces . 18
subsc . 19
supsc . 19
symbol . 20
Sys.path . 22
v . 22
%eq% . 23
%p% . 24

Index 26

changed Identify changed values

Description

The changed function identifies changes in a vector or data frame. The function is used to locate
grouping boundaries. It will return a TRUE each time the current value is different from the previous
value. The changed function is similar to the Base R duplicated function, except the changed
function will return TRUE even if the changed value is not unique.

Usage

changed(x, reverse = FALSE, simplify = FALSE)

Arguments

x A vector of values in which to identify changed values. Also accepts a data
frame. In the case of a data frame, the function will use all columns. Input data
can be any data type.

reverse Reverse the direction of the scan to identify the last value in a group instead of
the first.

simplify If the input data to the function is a data frame, the simplify option will return a
single vector of indicator values instead of a data frame of indicator values.

Details

For a data frame, by default, the function will return another data frame with an equal number of
change indicator columns. The column names will be the original column names, with a ".changed"
suffix.

To collapse the multiple change indicators into one vector, use the "simplify" option. In this case,
the returned vector will essentially be an "or" operation across all columns.

changed 3

Value

A vector of TRUE or FALSE values indicating the grouping boundaries of the vector or data frame.
If the input data is a data frame and the "simplify" parameter is FALSE, the return value will be a
data frame of logical vectors describing changed values for each column.

Examples

Create sample vector
v1 <- c(1, 1, 1, 2, 2, 3, 3, 3, 1, 1)

Identify changed values
res1 <- changed(v1)

View results
res1
[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE

Create sample data frame
v2 <- c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B")
dat <- data.frame(v1, v2)

View original data frame
dat
v1 v2
1 1 A
2 1 A
3 1 A
4 2 A
5 2 A
6 3 A
7 3 B
8 3 B
9 1 B
10 1 B

Get changed values for each column
res2 <- changed(dat)

View results
res2
v1.changed v2.changed
1 TRUE TRUE
2 FALSE FALSE
3 FALSE FALSE
4 TRUE FALSE
5 FALSE FALSE
6 TRUE FALSE
7 FALSE TRUE
8 FALSE FALSE
9 TRUE FALSE
10 FALSE FALSE

4 copy.attributes

Get changed values for all columns
res3 <- changed(dat, simplify = TRUE)

View results
res3
[1] TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE

Get last items in each group instead of first
res4 <- changed(dat, reverse = TRUE)

View results
res4
v1.changed v2.changed
1 FALSE FALSE
2 FALSE FALSE
3 TRUE FALSE
4 FALSE FALSE
5 TRUE FALSE
6 FALSE TRUE
7 FALSE FALSE
8 TRUE FALSE
9 FALSE FALSE
10 TRUE TRUE

copy.attributes Copy attributes between two data frames

Description

A function to copy column attributes from one data frame to another. The function will copy
all attributes attached to each column. The column order does not matter, and the data frames
do not need identical structures. The matching occurs by column name, not position. Any existing
attributes on the target data frame that do not match the source data frame will be retained unaltered.

Usage

copy.attributes(source, target)

Arguments

source A data frame to copy attributes from.

target A data frame to copy attributes to.

Value

The data frame in the target parameter, with updated attributes from source.

See Also

Other overrides: labels.data.frame(), sort.data.frame()

dir.find 5

Examples

Prepare data
dat1 <- mtcars
dat2 <- mtcars

Set labels for dat1
labels(dat1) <- list(mpg = "Miles Per Gallon",

cyl = "Cylinders",
disp = "Displacement")

Copy labels from dat1 to dat2
dat2 <- copy.attributes(dat1, dat2)

View results
labels(dat2)
$mpg
[1] "Miles Per Gallon"
#
$cyl
[1] "Cylinders"
#
$disp
[1] "Displacement"

dir.find Search for directories

Description

A function to find directories on the file system. The function starts from the directory specified in
the path parameter, and searches outward in a radiating pattern for the ending directory name in
the pattern parameter. The up and down parameters define the scope of the search. Results are
returned as a vector of full paths in the order encountered. This function has an advantage over
list.dirs in that it can search both up and down the file system, and limit the scope of the search.

Usage

dir.find(path = ".", pattern = NULL, up = 5, down = 2)

Arguments

path The directory to start searching from. Default is the current working directory.

pattern A full or partial name of the directory to find. If partial, use the question mark
(?) or asterisk (*) characters to indicate the missing piece. Default is NULL,
which will return all directories.

up The number of levels above the base path to search. A value of zero (0) means
that you do not want to search up. A value of -1 means you do not want to
include the base directory in the search results. Default is 5 levels up.

6 dir.find

down The number of levels below the base path to search. A value of zero (0) means
that you do not want to search down. A value of -1 means you do not want to
include the base directory in the search results. Default is 2 levels down.

Details

The dir.find function attempts to find a directory based on a full or partial directory name. The
directory name is passed on the pattern parameter. The pattern accepts both the single character
question mark wild card (?), and the asterisk, multi-character wild card (*). Searches are case-
insensitive.

Starting from the base path specified in the path parameter, the function searches both above and
below the base path in an alternating pattern. The function will first search the base path, then up
one level, then down one level, and so on. The boundaries of the search can be controlled by the up
and down parameters.

You can control whether or not you want the base directory included in the results. To include this
directory, ensure both up and down parameters are zero or greater. If either of these parameters is set
to -1, the base path will be excluded. For example, up = 3, down = 1 will search up three levels, and
down one level. up = 3, down = 0 will search up three levels and not search down, but will include
the base directory. up = 3, down = -1 will search up three levels, not search down, and not include
the base directory in the results.

Value

A vector of one or more full directory paths that met the search criteria. The paths in the vector are
returned in the order of matches, according to the search algorithm. That means the first directory
found will be in position one, and the last directory found will be at the end of the vector. A NULL
is returned if no directories met the search criteria.

See Also

Other fileops: Sys.path(), file.find(), source.all()

Examples

Search for a directory named "prod"
file.find(pattern = "prod")

Search for a directory that starts with "dat"
file.find(pattern = "dat*")

Search for a directory up only
file.find(pattern = "dat*", up = 3, down = 0)

Search for directories up only, skipping the current working directory
file.find(pattern = "dat*", up = 3, down = -1)

file.find 7

file.find Search for files

Description

A function to find files on the file system. The function starts from the directory specified in the path
parameter, and searches outward in a radiating pattern for the file name in the pattern parameter.
Results are returned as a vector of full paths in the order encountered. The up and down parameters
define the scope of the search. This function has an advantage over list.files in that it can search
both up and down the file system, and limit the scope of the search.

Usage

file.find(path = ".", pattern = NULL, up = 3, down = 1)

Arguments

path The directory to start searching from. Default is the current working directory.

pattern A full or partial name of the file to find. If partial, use the question mark (?) or
asterisk (*) characters to indicate the missing piece. Default is NULL, which
will return all files.

up The number of levels above the base path to search. A value of zero (0) means
that you do not want to search up. A value of -1 means you do not want to
include the base directory in the search results. Default is 3 levels up.

down The number of levels below the base path to search. A value of zero (0) means
that you do not want to search down. A value of -1 means you do not want to
include the base directory in the search results. Default is 1 level down.

Details

The file.find function attempts to find a file based on a full or partial file name. The file name
is passed on the pattern parameter. The pattern accepts both the single character question mark
wild card (?), and the asterisk multi-character wild card (*). Searches are case-insensitive.

Starting from the base path specified in the path parameter, the function searches both above and
below the base path in an alternating pattern. The function will first search the base path, then up
one level, then down one level, and so on. The boundaries of the search can be controlled by the up
and down parameters.

You can control whether or not you want files from the base directory included in the results.
To include these files, ensure both up and down parameters are zero or greater. If either of these
parameters is set to -1, the base path will be excluded. For example, up = 3, down = 1 will search
up three levels, and down one level. up = 3, down = 0 will search up three levels and not search
down, but will include the base directory. up = 3, down = -1 will search up three levels, not search
down, and not include the base directory in the results.

8 find.names

Value

A vector of one or more full file paths that met the search criteria. The paths in the vector are
returned in the order of matches, according to the search algorithm. That means the first file found
will be in position one, and the last file found will be at the end of the vector. A NULL is returned
if no files met the search criteria.

See Also

Other fileops: Sys.path(), dir.find(), source.all()

Examples

Search for a file named "globals.R"
file.find(getwd(), "globals.R")

Search for Rdata files
file.find(getwd(), "*.Rdata")

Search for Rdata files up only
file.find(getwd(), "*.Rdata", up = 3, down = 0)

Search for Rdata files up only, skipping the current working directory
file.find(getwd(), "*.Rdata", up = 3, down = -1)

find.names Search for names

Description

A function to search for variable names in a data.frame or tibble. The function features wild card
pattern matching, start and end boundaries, and names to exclude.

Usage

find.names(
x,
pattern = NULL,
exclude = NULL,
start = NULL,
end = NULL,
ignore.case = TRUE

)

find.names 9

Arguments

x A data frame or tibble whose names to search. Parameter also accepts a character
vector of names.

pattern A vector of patterns to search for. The asterisk (*) and question mark (?) char-
acters may be used to indicate partial matches.

exclude A vector of patterns to exclude from the search results. The asterisk (*) and
question mark (?) characters may be used to indicate partial matches.

start A variable name or position to start the search. Default is 1.

end A variable name or position to end the search. Default is the length of the name
vector.

ignore.case Whether to perform a case sensitive or insensitive search. Valid values are TRUE
and FALSE. Default is TRUE.

Value

A vector of variable names that met the search criteria.

Examples

Show all names for reference
names(mtcars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"

Names that start with "c"
find.names(mtcars, "c*")
[1] "cyl" "carb"

Names that start with "c" or "d"
find.names(mtcars, c("c*", "d*"))
[1] "cyl" "carb" "disp" "drat"

Names between "disp" and "qsec"
find.names(mtcars, start = "disp", end = "qsec")
[1] "disp" "hp" "drat" "wt" "qsec"

Names that start with "c" or "d" after position 5
find.names(mtcars, c("c*", "d*"), start = 5)
[1] "carb" "drat"

Names between "disp" and "qsec" excluding "wt"
find.names(mtcars, start = "disp", end = "qsec", exclude = "wt")
[1] "disp" "hp" "drat" "qsec"

10 labels.data.frame

labels.data.frame Get or set labels for a data frame

Description

The labels function extracts all assigned labels from a data frame, and returns them in a named
list. The function also assigns labels from a named list. This function is a data frame-specific
implementation of the Base R labels function.

Usage

S3 method for class 'data.frame'
labels(object, ...)

labels(x) <- value

Arguments

object A data frame or tibble.

... Follow-on parameters. Required for generic function.

x A data frame or tibble

value A named list of labels. The labels must be quoted strings.

Details

If labels are assigned to the "label" attributes of the data frame columns, the labels function will
extract those labels. The function will return the labels in a named list, where the names correspond
to the name of the column that the label was assigned to. If a column does not have a label attribute
assigned, that column will not be included in the list.

When used on the receiving side of an assignment, the function will assign labels to a data frame.
The labels should be in a named list, where each name corresponds to the data frame column to
assign the label to.

Finally, if you wish to clear out the label attributes, assign a NULL value to the labels function.

Value

A named list of labels. The labels must be quoted strings.

See Also

Other overrides: copy.attributes(), sort.data.frame()

roundup 11

Examples

Take subset of data
df1 <- mtcars[1:10, c("mpg", "cyl")]

Assign labels
labels(df1) <- list(mpg = "Mile Per Gallon", cyl = "Cylinders")

Examine attributes
str(df1)
'data.frame': 10 obs. of 2 variables:
$ mpg: num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2
..- attr(*, "label")= chr "Mile Per Gallon"
$ cyl: num 6 6 4 6 8 6 8 4 4 6
..- attr(*, "label")= chr "Cylinders"

View assigned labels
labels(df1)
$mpg
[1] "Mile Per Gallon"
#
$cyl
[1] "Cylinders"

Clear labels
labels(df1) <- NULL

Display Cleared Labels
labels(df1)
list()

roundup Rounds numbers up

Description

A function that rounds positive numbers up when the last digit is a 5. For negative numbers ending
in 5, the function actually rounds down. "Round away from zero" is the most accurate description
of this function.

Usage

roundup(x, digits = 0)

Arguments

x A vector of values to round. Also accepts a data frame. In the case of a data
frame, the function will round all numeric columns.

digits A number of decimal places to round to. Default is zero.

12 sort.data.frame

Value

The rounded data vector.

Examples

Round to even
round(2.4) # 2
round(2.5) # 2
round(-2.5) # -2
round(2.6) # 3

Round up
roundup(2.4) # 2
roundup(2.5) # 3
roundup(-2.5) # -3
roundup(2.6) # 3

sort.data.frame Sorts a data frame

Description

An overload to the Base R sort function for data frames. Allows multiple columns to be sorted
easily. Also allows you to control the sort direction for each column independently.

Usage

S3 method for class 'data.frame'
sort(
x,
decreasing = FALSE,
...,
by = NULL,
ascending = TRUE,
na.last = TRUE,
index.return = FALSE

)

Arguments

x The input data frame to sort.

decreasing This parameter was added to conform to the S3 generic method signature of the
sort function, and will be ignored here. Please use the ascending parameter.

... This parameter is required for the generic method signature. Anything passed
on it will be ignored.

sort.data.frame 13

by A vector of column names to sort by. If this parameter is not supplied, the
function will sort by all columns in order from left to right.

ascending A vector of TRUE or FALSE values corresponding to the variables on the by
parameter. These values will determine the direction to sort each column. As-
cending is TRUE, and descending is FALSE. The vector will be recycled if it is
short, and truncated if it is long. By default, all variables will be sorted ascend-
ing.

na.last Whether to put NA values first or last in the sort. If TRUE, NA values will sort
to the bottom. If FALSE, NA values will sort to the top. The default is TRUE.

index.return Whether to return the sorted data frame or a vector of sorted index values. If this
parameter is TRUE, the function will return sorted index values. By default, the
parameter is FALSE, and will return the sorted data frame.

Value

The function returns either a sorted data frame or a sorted vector of row index values, depending on
the value of the index.return parameter. If index.return is FALSE, the function will return the
sorted data frame. If the index.return parameter is TRUE, it will return a vector of row indices.

See Also

Other overrides: copy.attributes(), labels.data.frame()

Examples

Prepare unsorted sample data
dt <- mtcars[1:10, 1:3]
dt
mpg cyl disp
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0
Datsun 710 22.8 4 108.0
Hornet 4 Drive 21.4 6 258.0
Hornet Sportabout 18.7 8 360.0
Valiant 18.1 6 225.0
Duster 360 14.3 8 360.0
Merc 240D 24.4 4 146.7
Merc 230 22.8 4 140.8
Merc 280 19.2 6 167.6

Sort by mpg ascending
dt1 <- sort(dt, by = "mpg")
dt1
mpg cyl disp
Duster 360 14.3 8 360.0
Valiant 18.1 6 225.0
Hornet Sportabout 18.7 8 360.0
Merc 280 19.2 6 167.6
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0

14 sort.data.frame

Hornet 4 Drive 21.4 6 258.0
Datsun 710 22.8 4 108.0
Merc 230 22.8 4 140.8
Merc 240D 24.4 4 146.7

Sort by mpg descending
dt1 <- sort(dt, by = "mpg", ascending = FALSE)
dt1
mpg cyl disp
Merc 240D 24.4 4 146.7
Datsun 710 22.8 4 108.0
Merc 230 22.8 4 140.8
Hornet 4 Drive 21.4 6 258.0
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0
Merc 280 19.2 6 167.6
Hornet Sportabout 18.7 8 360.0
Valiant 18.1 6 225.0
Duster 360 14.3 8 360.0

Sort by cyl then mpg
dt1 <- sort(dt, by = c("cyl", "mpg"))
dt1
mpg cyl disp
Datsun 710 22.8 4 108.0
Merc 230 22.8 4 140.8
Merc 240D 24.4 4 146.7
Valiant 18.1 6 225.0
Merc 280 19.2 6 167.6
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0
Hornet 4 Drive 21.4 6 258.0
Duster 360 14.3 8 360.0
Hornet Sportabout 18.7 8 360.0

Sort by cyl descending then mpg ascending
dt1 <- sort(dt, by = c("cyl", "mpg"),

ascending = c(FALSE, TRUE))
dt1
mpg cyl disp
Duster 360 14.3 8 360.0
Hornet Sportabout 18.7 8 360.0
Valiant 18.1 6 225.0
Merc 280 19.2 6 167.6
Mazda RX4 21.0 6 160.0
Mazda RX4 Wag 21.0 6 160.0
Hornet 4 Drive 21.4 6 258.0
Datsun 710 22.8 4 108.0
Merc 230 22.8 4 140.8
Merc 240D 24.4 4 146.7

source.all 15

source.all Source all programs in a directory

Description

A function to source all programs in a specified directory. The function will run each R program
file in the directory, and then return a data frame of results of the run.

Usage

source.all(path = ".", pattern = NULL, exclude = NULL, isolate = TRUE)

Arguments

path The directory to source programs from. Default is the current working directory.

pattern A full or partial name of the programs to source. If partial, use the question
mark (?) or asterisk (*) characters to indicate the missing piece(s). Default is
NULL, which will return all programs. You may pass multiple patterns as a
vector. In that case, the function will perform an "or" operation on each pattern.
Note that it is not necessary to include the ".R" file extension in your patterns. It
is assumed that all source files have a ".R" extension.

exclude A vector of patterns to exclude from the included programs. The exclusion pat-
terns can be the names of specific programs or a wild card exclusion. The aster-
isk (*) and question mark (?) characters may be used to indicate partial matches.
Similar to the "pattern" parameter, the ".R" file extension can be ignored.

isolate Whether to isolate each source call to its own environment. Valid values are
TRUE, FALSE, or an environment to run in. If the isolate parameter is FALSE,
the programs will run in the global environment. Default is TRUE.

Details

The source.all function attempts to run all programs in a directory. This function is useful for
batch runs. It has parameters to control which programs are run or not run. By default, the function
will run all programs in the working directory. You can use the "pattern" and "exclude" parameters
to specify individual program names, or wild card matches. Inclusion and exclusion patterns are
case-insensitive.

Note that the function will run all programs, regardless of any errors. Errors will be indicated in the
"Status" and "Message" columns of the result dataset.

Value

A data frame of the results of the source operation. The data frame will show each file sourced,
the time started, the time ended, the status, and any error messages. The status value is either 0 (no
errors) or 1 (errors).

16 source.all

Result Dataset

The source.all function returns a dataset showing the results of the source operation. There will
be one row for each program executed. The return dataset has the following columns:

• Filename: The name of the program.

• StartTime: The date and time execution started.

• EndTime: The date and time execution ended.

• Status: A numeric value indicating whether or not the program returned errors or warnings.
A zero (0) value indicates that no errors occurred. A one (1) value indicates that an error
occurred. Warnings can also be generated along with an error, but the status will still be one
(1). A two (2) value indicates that warnings occurred but no errors. Note that capture of
warnings is less reliable than the capture of errors. It is possible that a program may generate
a warning and still return a zero (0) status. If you want to ensure that warnings are detected,
convert them to errors with options(warn = 2).

• Message: If errors or warnings are returned from the program, they will be shown in this
column. Multiple messages will be separated with a semi-colon (;) and a carriage return.

In addition to the information shown above, the results dataset will have attributes assigned with
the parameter values passed to the function. Those attributes can be observed with the Base R
attributes() function.

Source Isolation

Multiple programs running in the same environment have a risk of conflicting variables or data.
Variables created by the first program can possibly interfere with the running of the next program.
Or they could conflict with variables in the global environment. To avoid such conflicts, each
program is run in its own environment by default. isolate = TRUE starts each program with a clean
workspace, and is the best choice for running programs in batch.

There may be situations, however, where you do not want to isolate the source calls. For example,
if you are loading functions from a utility library, you may actually wanted them loaded into the
global environment so they can by accessed by you or your programs. In this case, set the "isolate"
parameter to FALSE.

Lastly, there may be situations where you want to intentionally share an environment, or extract
values create by the running programs. In this case, you can instantiate a new environment yourself,
and pass that to the "isolate" parameter instead of TRUE or FALSE. Note that this environment will
be shared by all programs, but will not have access to the global environment.

See Also

Other fileops: Sys.path(), dir.find(), file.find()

Examples

Create temp directory
tmp <- tempdir()

Write program 1
p1 <- file(file.path(tmp, "prog1.R"))

source.all 17

writeLines("print('Hello from program 1')", p1)
close(p1)

Write program 2
p2 <- file(file.path(tmp, "prog2.R"))
writeLines("stop('Error from program 2')", p2)
close(p2)

Write program 3
p3 <- file(file.path(tmp, "prog3.R"))
writeLines("print('Hello from program 3')", p3)
close(p3)

Example #1: Run all programs
res1 <- source.all(tmp)
[1] "Hello from program 1"
[1] "Hello from program 3"

View results
res1
Filename StartTime EndTime Status Message
1 prog1.R 2024-03-05 10:12:04 2024-03-05 10:12:04 0 Success
2 prog2.R 2024-03-05 10:12:04 2024-03-05 10:12:04 1 Error from program 2
3 prog3.R 2024-03-05 10:12:04 2024-03-05 10:12:04 0 Success

#' # Example #2: Exclusion criteria
res2 <- source.all(tmp, exclude = "prog2")
[1] "Hello from program 1"
[1] "Hello from program 3"

View results
res2
Filename StartTime EndTime Status Message
1 prog1.R 2024-03-05 10:13:24 2024-03-05 10:13:24 0 Success
2 prog3.R 2024-03-05 10:13:24 2024-03-05 10:13:24 0 Success

Example #3: Inclusion criteria
res3 <- source.all(tmp, pattern = "*2")

View results
res3
Filename StartTime EndTime Status Message
1 prog2.R 2024-03-05 10:16:41 2024-03-05 10:16:41 1 Error from program 2

View attributes
attributes(res3)
$names
[1] "Filename" "StartTime" "EndTime" "Status" "Message"
#
$class
[1] "data.frame"
#
$row.names

18 spaces

[1] 1
#
$path
[1] "C:\Users\dbosa\AppData\Local\Temp\RtmpGAXYJl"
#
$pattern
[1] "*2.R"
#
$errors
[1] 1

spaces Creates a string of blank spaces

Description

A function to create a string of some number of blank spaces. This function is useful when trying
to align things.

Usage

spaces(num)

Arguments

num The desired number of spaces.

Value

A single character vector of blank spaces.

Examples

Create spaces
spaces(10)
[1] " "

Use spaces to separate something
str <- "Left" %p% spaces(40) %p% "Right"
str
[1] "Left Right"

subsc 19

subsc Converts a string to UTF-8 subscript

Description

The subsc function translates a normal character to a UTF-8 subscript character. The function can
be used to generate subscripts for many common characters. All numeric characters and some lower
case letters have UTF-8 subscripts. There are no upper case subscript letters. This function is useful
because it saves you from having to look up the subscript character code, or copy and paste from
the internet. If a corresponding subscript character code does not exist, a question mark will be
returned for that character.

Usage

subsc(x)

Arguments

x A string to be converted to subscript.

Value

The subscript version of the string passed to the function, if one exists. Otherwise, a question mark
will be returned.

See Also

Other utf8: supsc(), symbol()

Examples

Date string
paste0("December 5", subsc("th"))

Chemistry
paste0("H", subsc("2"), "SO", subsc("4"))

supsc Converts a string to UTF-8 superscript

Description

The supsc function translates a normal character to a UTF-8 superscript character. The function
can be used to generate superscripts for many common characters. Most alphabetic and numeric
characters have UTF-8 superscripts. This function is useful because it saves you from having to
look up the superscript character code, or copy and pasting from the internet. If a corresponding
superscript character code does not exist, a question mark will be returned for that character.

20 symbol

Usage

supsc(x)

Arguments

x A string to be converted to superscript.

Value

The superscript version of the string passed to the function, if one exists. Otherwise, a question
mark will be returned.

See Also

Other utf8: subsc(), symbol()

Examples

Single letter
paste0(supsc("a"), "Footnote")

Single number
paste0(supsc("1"), "Footnote")

Character string
paste0("December 5", supsc("th"))

Formula
paste0("x", supsc("(a+1)"))

symbol Gets UTF-8 symbol characters

Description

The symbol function gets UTF-8 symbol characters. You can call this function to look up trade-
marks, Greek letters, and mathematical operators. The function uses HTML entity keywords to
indicate which symbol to return. You may pass more than one keyword in a single call to get a
combined result. Any characters not recognized as a keyword will be left alone. Characters sur-
rounded by square brackets ([]) will be subscripted. Characters surrounded by square brackets and
prefixed with an up arrow (^[]) will be superscripted.

Usage

symbol(keyword)

symbol 21

Arguments

keyword A symbol keyword. This keyword follows HTML conventions. See the Key-
words section for a complete list of all supported keywords.

Value

The requested UTF-8 symbol character or characters.

Keywords

The following symbol keywords are available:

• Trademark and Copyright: copy, reg, trade

• Financial: cent, euro, pound, rupee, ruble, yen, yuan

• Mathmatical: asymp, bcong, cong, coprod, empty, fnof, ge, int, Int, infin, le, ncong, ne, not,
part, plusmn, prod, radic, sime, sum

• Logical: and, cap, cup, comp, cuvee, cuwed, exist, forall, fork, isin, nexist, ni, notin, notni,
nsub, nsup, or, sub, sup, xcap, xcup, xvee, xwedge

• Greek uppercase letters: Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa,
Lambda, Mu, Nu, Xi, Omicron, Pi, Rho, Sigma, Tau, Upsilon, Phi, Chi, Psi, Omega

• Greek lowercase letters: alpha, beta, gamma, delta, epsilon, zeta, eta, theta, iota, kappa,
lambda, mu, nu, xi, omicron, pi, rho, sigma, tau, upsilon, phi, chi, psi, omega

• Arrows: rarr, larr, barr, uarr, darr, harr, rArr, lArr, uArr, dArr, hArr

• Other Symbols: dagger, ddagger, deg, permil, pertenk, sect

See Also

Other utf8: subsc(), supsc()

Examples

Trademark symbol
symbol("My Companytrade")

Registered Trademark symbol
symbol("My Companyreg")

Dagger symbol concatenated
paste0(symbol("dagger"), "My footnotes")

Alpha squared
symbol("alpha^[2]")

Greek Symbols
symbol("SigmaPsiZeta")

Useful Math Symbols
symbol("asymp ge le ne plusmn empty fnof radic sum")

22 v

Useful Logical Symbols
symbol("forall isin notin cup cap and or")

Chemistry
symbol("2H[2] + O[2] barr 2H[2]O")

Sys.path Returns the path of the current program

Description

A function that gets the full path of the currently running program. If the function fails to retrieve
the path for some reason, it will return a NULL. The function takes no parameters.

Usage

Sys.path()

Value

The full path of the currently running program, or a NULL.

See Also

Other fileops: dir.find(), file.find(), source.all()

Examples

Get current path
pth <- Sys.path()
pth
[1] "C:/programs/myprogram.R"

v Combine unquoted values

Description

A function to quote and combine unquoted values. The function will return a vector of quoted
values. This function allows you to use non-standard evaluation for any parameter that accepts a
string or vector of strings.

Usage

v(...)

%eq% 23

Arguments

... One or more unquoted values.

Value

A vector of quoted values.

Examples

Combine unquoted values
v(var1, var2, var3)
[1] "var1" "var2" "var3"

Data frame subset
dat <- mtcars[1:5, v(mpg, cyl, disp)]
dat
mpg cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

Data frame sort
dat2 <- sort(dat, by = v(cyl, mpg))
dat2
mpg cyl disp
Datsun 710 22.8 4 108
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

%eq% Check equality of two objects

Description

The goal of the %eq% operator is to return a TRUE or FALSE value when any two objects are
compared. The function provides a simple, reliable equality check that allows comparing of NULLs,
NA values, and atomic data types without error.

The function also allows comparing of data frames. It will return TRUE if all values in the data
frames are equal, and ignores differences in attributes.

Usage

x1 %eq% x2

24 %p%

Arguments

x1 The first object to compare

x2 The second object to compare

Value

A single TRUE or FALSE value depending on whether the objects are equal.

Examples

Comparing of NULLs and NA
NULL %eq% NULL # TRUE
NULL %eq% NA # FALSE
NA %eq% NA # TRUE
1 %eq% NULL # FALSE
1 %eq% NA # FALSE

Comparing of atomic values
1 %eq% 1 # TRUE
"one" %eq% "one" # TRUE
1 %eq% "one" # FALSE
1 %eq% Sys.Date() # FALSE

Comparing of vectors
v1 <- c("A", "B", "C")
v2 <- c("A", "B", "D")
v1 %eq% v1 # TRUE
v1 %eq% v2 # FALSE

Comparing of data frames
mtcars %eq% mtcars # TRUE
mtcars %eq% iris # FALSE
iris %eq% iris[1:50,] # FALSE

Mixing it up
mtcars %eq% NULL # FALSE
v1 %eq% NA # FALSE
1 %eq% v1 # FALSE

%p% An infix operator for paste0()

Description

This function provides an infix operator for the paste0 function to concatenate strings. The operator
will concatenate a vector of one or more values. The functionality is identical to paste0(), but more
convenient to use in some situations.

%p% 25

Usage

x %p% y

Arguments

x A value for the left side of the paste infix operator.

y A value for the right side of the paste infix operator.

Value

The concatenated or pasted value. No spaces will be inserted in between the values to paste. If a
vector of values is supplied, a vector of pasted values will be returned.

Examples

Paste together two strings
str <- "Hello" %p% "World"
str
[1] "HelloWorld"

Paste together number and string
str <- 100 %p% " Kittens"
str
[1] "100 Kittens"

Paste together two vectors
v1 <- c("A", "B", "C")
v2 <- c(1, 2, 3)
str <- v1 %p% v2
str
[1] "A1" "B2" "C3"

Index

∗ fileops
dir.find, 5
file.find, 7
source.all, 15
Sys.path, 22

∗ overrides
copy.attributes, 4
labels.data.frame, 10
sort.data.frame, 12

∗ strings
spaces, 18

∗ utf8
subsc, 19
supsc, 19
symbol, 20

%eq%, 23
%p%, 24

changed, 2
copy.attributes, 4, 10, 13

dir.find, 5, 8, 16, 22

file.find, 6, 7, 16, 22
find.names, 8

labels, 10
labels.data.frame, 4, 10, 13
labels<- (labels.data.frame), 10

paste0, 24

roundup, 11

sort, 12
sort.data.frame, 4, 10, 12
source.all, 6, 8, 15, 22
spaces, 18
subsc, 19, 20, 21
supsc, 19, 19, 21
symbol, 19, 20, 20

Sys.path, 6, 8, 16, 22

v, 22

26

	changed
	copy.attributes
	dir.find
	file.find
	find.names
	labels.data.frame
	roundup
	sort.data.frame
	source.all
	spaces
	subsc
	supsc
	symbol
	Sys.path
	v
	eq
	p
	Index

