Type: | Package |
Title: | Composite Likelihood Estimation for Spatial Data |
Version: | 1.1.2 |
Maintainer: | Ting Fung (Ralph) Ma <tingfung.ma@wisc.edu> |
Description: | Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) <doi:10.1002/env.2306>. Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix. |
License: | GPL-2 |
LazyData: | TRUE |
RoxygenNote: | 6.0.1 |
Depends: | R (≥ 3.2.0) |
Imports: | AER (≥ 1.2-5), pbivnorm (≥ 0.6.0), MASS (≥ 7.3-45), magic (≥ 1.5-6), survival (≥ 2.37-5), clordr (≥ 1.0.2), doParallel (≥ 1.0.11), foreach (≥ 1.2.0), utils, stats |
NeedsCompilation: | no |
Packaged: | 2018-02-23 04:23:42 UTC; Ralph |
Author: | Ting Fung (Ralph) Ma [cre, aut], Wenbo Wu [aut], Jun Zhu [aut], Xiaoping Feng [aut], Daniel Walsh [ctb], Robin Russell [ctb] |
Repository: | CRAN |
Date/Publication: | 2018-02-23 19:05:06 UTC |
Composite Likelihood Calculation for Spatial Ordinal Data
Description
func.cl.ord
calculates the composite log-likelihood for spatial ordered probit models.
Usage
func.cl.ord(vec.yobs, mat.X, mat.lattice, radius, n.cat, vec.par)
Arguments
vec.yobs |
a vector of observed responses for all N sites. |
mat.X |
regression (design) matrix, including intercepts. |
mat.lattice |
a data matrix containing geographical information of sites. The i th row constitutes a set of geographical coordinates. |
radius |
weight radius. |
n.cat |
number of categories, at least 2. |
vec.par |
a vector of parameters consecutively as follows: a series of cutoffs (excluding -Inf, 0 and Inf) for latent responses, a vector of covariate parameters, a parameter 'sigmasq' modeling covariance matrix, 0<=sigmasq<=1, and a parameter 'rho' reflecting spatial correlation, abs(rho)<=1. |
Value
func.cl.ord
returns a list: number of categories, sum of weights, composite log-likelihood, a vector of scores, and a matrix of first-order partial derivatives for vec.par
.
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# True parameter
vec.cutoff <- 2; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(vec.cutoff, vec.beta, sigmasq, rho)
# Coordinate matrix
n.cat <- 3; n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.ord(vec.ylat, vec.alpha=c(-Inf,0,vec.cutoff,Inf))
# Using func.cl.ord()
ls <- func.cl.ord(vec.yobs, mat.X, mat.lattice, radius, n.cat, vec.par)
ls$log.lkd
Reparameterized Composite Likelihood Calculation for Spatial Ordinal Data
Description
func.cl.ord
calculates the composite log-likelihood for reparameterized spatial ordered probit models. This function is internally called by func.cle.ord
.
Usage
func.cl.ord.repar(vec.yobs, mat.X, mat.lattice, radius, n.cat, vec.repar)
Arguments
vec.yobs |
a vector of observed responses for all N sites. |
mat.X |
regression (design) matrix, including intercepts. |
mat.lattice |
a data matrix containing geographical information of sites. The i th row constitutes a set of geographical coordinates. |
radius |
weight radius. |
n.cat |
number of categories, at least 2. |
vec.repar |
a vector of parameters consecutively as follows: a reparameterized vector (tau's) for latent responses, a vector of covariate parameters, a parameter 'sigmasq' modeling covariance matrix, 0<=sigmasq<=1, and a parameter 'rho' reflecting spatial correlation, abs(rho)<=1. |
Value
func.cl.ord
returns a list: number of categories, sum of weights, composite log-likelihood, a vector of scores, and a matrix of first-order partial derivatives for vec.par
.
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Composite Likelihood Calculation for Spatial Proportional Data
Description
func.cl.prop
calculates the composite log-likelihood for spatial Tobit models.
Usage
func.cl.prop(vec.yobs, mat.X, mat.lattice, radius, vec.par)
Arguments
vec.yobs |
a vector of observed responses for all N sites. |
mat.X |
regression (design) matrix, including intercepts. |
mat.lattice |
a data matrix containing geographical information of sites. The i th row constitutes a set of geographical coordinates. |
radius |
weight radius. |
vec.par |
a vector of parameters consecutively as follows: a cutoff point for latent responses, a vector of covariate parameters, a parameter 'sigmasq' modeling covariance matrix, 0<=sigmasq<=1, and a parameter 'rho' reflecting spatial correlation, abs(rho)<=1. |
Value
func.cl.prop
returns a list of sum of weights, composite log-likelihood, a vector of scores, and a matrix of first-order partial derivatives for vec.par
.
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# True parameter
alpha <- 4; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(alpha, vec.beta, sigmasq, rho)
# Coordinate matrix
n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.prop(vec.ylat, alpha=alpha)
# Use func.cl.prop()
ls <- func.cl.prop(vec.yobs, mat.X, mat.lattice, radius, vec.par)
ls$log.lkd
Composite Likelihood Estimation for Spatial Ordinal Data
Description
func.cle.ord
performs composite likelihood estimation of parameters and their standard errors in a spatial ordered probit model by maximizing its composite log-likelihood.
Usage
func.cle.ord(vec.yobs, mat.X, mat.lattice, radius, n.cat, n.sim = 100,
parallel = TRUE, n.core = max(detectCores()/2, 1), output = TRUE)
Arguments
vec.yobs |
a vector of observed responses for all N sites. |
mat.X |
regression (design) matrix, including intercepts. |
mat.lattice |
a data matrix containing geographical information of sites. The ith row constitutes a set of geographical coordinates. |
radius |
weight radius. |
n.cat |
number of categories. |
n.sim |
number of simulations used for calculate the Godambe matrix (default: 100). |
parallel |
logical flag indicates using parallel processing (default: |
n.core |
number of physical cores used for parallel processing (when |
output |
logical flag indicates whether printing out result (default: |
Details
Given the design matrix, the vector of observed responses, spatial lattice data, weight radius, number of categories, and the prespecified number of simulated vectors of responses used in estimating the Godambe information, this function assumes initial values of cutoff points and \beta
as the estimates from the standard ordered probit regression with independent responses. After initial reparameterization, it first estimates parameters of interest by maximizing the composite log-likelihood using optim
, then computes the reparameterized sample covariance matrix and the set of standard errors, and finally reverse the reparameterization to obtain estimates corresponding to the original parameterization.
Value
func.cle.ord
returns a list containing:
vec.par
: a vector of estimator for \theta
=(cutoff,\beta,\sigma^2,\rho)
;
vec.se
: a vector of standard error for the estimator;
mat.asyvar
: estimated asymptotic covariance matrix H^{-1}(\theta)J(\theta)H^{-1}(\theta)
for the estimator; and
vec.comp
: a vector of computational time for parameter and standard error estimation.
CLIC
: Composite likelihood information criterion proposed by Varin and Vidoni (2005), i.e. -2*logCL(\theta) + 2*trace(H^{-1}(\theta)J(\theta))
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# Example of n.cat = 3 (Spatial ordinal regression)
# True parameter
vec.cutoff <- 2; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(vec.cutoff, vec.beta, sigmasq, rho)
# Coordinate matrix
n.cat <- 3; n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.ord(vec.ylat, vec.alpha=c(-Inf,0,vec.cutoff,Inf))
# With parallel computing
## Not run:
ord.example <- func.cle.ord(vec.yobs, mat.X, mat.lattice, radius, n.cat,
n.sim=100, parallel = TRUE, n.core = 2)
round(ord.example$vec.par,4)
# alpha1 beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 1.8395 0.9550 1.9690 0.9565 0.0349 -1.0398 0.8200 0.5578
round(ord.example$vec.se,4)
# alpha1 beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 0.1602 0.1222 0.1463 0.0916 0.0485 0.0889 0.1935 0.1267
## End(Not run)
# Without parallel computing
## Not run:
ord.example2 <- func.cle.ord(vec.yobs, mat.X, mat.lattice, radius,
n.cat, n.sim=100, parallel = FALSE)
## End(Not run)
# Example for n.cat = 2 (i.e. Spatial probit regression)
# True parameter
vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.5; rho <- 0.6; radius <- 5
vec.par <- c(vec.beta, sigmasq, rho)
# Coordinate matrix
n.cat <- 2 ; n.lati <- n.long <- 40
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(123)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.ord(vec.ylat, vec.alpha=c(-Inf,0,Inf))
## Not run:
probit.example <- func.cle.ord(vec.yobs, mat.X, mat.lattice, radius, n.cat,
n.sim=100, parallel = TRUE, n.core = 4)
round(probit.example$vec.par,4)
# beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 1.0427 2.2250 1.0422 0.0156 -1.1489 0.4402 0.6636
round(probit.example$vec.se,4)
# beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 0.1198 0.1413 0.0863 0.0523 0.0935 0.1600 0.1263
## End(Not run)
Composite Likelihood Estimation for Spatial Proportional Data
Description
func.cle.prop
performs composite likelihood estimation of parameters and their standard errors in a spatial Tobit model by maximizing its composite log-likelihood.
Usage
func.cle.prop(vec.yobs, mat.X, mat.lattice, radius, n.sim = 100,
parallel = TRUE, n.core = max(detectCores()/2, 1), output = TRUE)
Arguments
vec.yobs |
a vector of observed responses for all N sites. |
mat.X |
regression (design) matrix, including intercepts. |
mat.lattice |
a data matrix containing geographical information of sites. The i-th row constitutes a set of geographical coordinates. |
radius |
weight radius. |
n.sim |
number of simulations used for calculate the Godambe matrix (default: 100). |
parallel |
logical flag indicating using parallel processing (default: |
n.core |
number of physical cores used for parallel processing (when |
output |
logical flag indicates whether printing out result (default: |
Details
Given the design matrix, the vector of observed responses, spatial lattice data, weight radius, and the prespecified number of simulated vectors of responses used in estimating the Godambe information matrix, this function assumes initial values of \beta
as the estimates from the standard Type I Tobit model with independent responses. The initial value of \alpha
and the right limit of the Tobit model are equally set to 1. Since there is only one cutoff point to be estimated, reparameterization is unnecessary. The function first estimates parameters of interest by maximizing the composite log-likelihood using optim(...,method = "L-BFGS-B")
, then computes the simulated based standard error and asymptotic covariance matrix.
Value
func.cle.prop
returns a list containing:
vec.par
: a vector of estimator for \theta=(\alpha,\beta,\sigma^2,\rho)
;
vec.se
: a vector of standard error for the estimator;
mat.asyvar
: estimated asymptotic covariance matrix H^{-1}(\theta)J(\theta)H^{-1}(\theta)
for the estimator; and
vec.comp
: a vector of computational time for parameter and standard error estimation.
CLIC
: Composite likelihood information criterion proposed by Varin and Vidoni (2005), i.e. -2*logCL(\theta) + 2*trace(H^{-1}(\theta)J(\theta))
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# True parameter
alpha <- 4; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(alpha, vec.beta, sigmasq, rho)
# Coordinate matrix
n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.prop(vec.ylat, alpha=alpha)
# With parallel computing
## Not run:
prop.example <- func.cle.prop(vec.yobs, mat.X, mat.lattice, radius,
n.sim=100, parallel = TRUE, n.core = 2)
round(prop.example$vec.par,4)
# alpha beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 3.8259 0.9921 1.9679 0.9455 0.0148 -0.9871 0.8386 0.5761
round(prop.example$vec.se ,4)
# alpha beta0 beta1 beta2 beta3 beta4 sigma^2 rho
# 0.1902 0.1406 0.1103 0.0744 0.0385 0.0652 0.1527 0.1151
## End(Not run)
# Without parallel computing
## Not run:
prop.example2 <- func.cle.prop(vec.yobs, mat.X, mat.lattice, radius, n.sim=100, parallel = FALSE)
## End(Not run)
Latent Response Transformation for Spatial Ordinal Data
Description
func.obs.ord
transforms a vector of latent responses into the corresponding observed ones under the spatial Probit model.
Usage
func.obs.ord(vec.ylat, vec.alpha)
Arguments
vec.ylat |
a vector of latent responses for all N sites. |
vec.alpha |
a vector of prespecified cutoff points, ascending with length at least 3, including -Inf, 0, and Inf. |
Value
func.obs.prop
returns a vector of observed responses.
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# True parameter
vec.cutoff <- 2; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(vec.cutoff, vec.beta, sigmasq, rho)
# Coordinate matrix
n.cat <- 3; n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.ord(vec.ylat, vec.alpha=c(-Inf,0,vec.cutoff,Inf))
Latent Response Transformation for Proportional Data
Description
func.obs.prop
transforms a vector of latent responses into the corresponding observed ones under the spatial Tobit model.
Usage
func.obs.prop(vec.ylat, alpha)
Arguments
vec.ylat |
a vector of latent responses for all N sites. |
alpha |
a cutoff point controlling the probability of latent reponse being one. |
Value
func.obs.prop
returns a vector of observed responses.
References
Feng, Xiaoping, Zhu, Jun, Lin, Pei-Sheng, and Steen-Adams, Michelle M. (2014) Composite likelihood Estimation for Models of Spatial Ordinal Data and Spatial Proportional Data with Zero/One values. Environmetrics 25(8): 571–583.
Examples
# A simple example for observation generation
a <- sample(c(0,1), 50, replace=TRUE)
b <- sample(runif(1000,0,10), 100, replace=TRUE)
alpha <- 4
vec.yobs <- func.obs.prop(vec.ylat=c(a, b), alpha=alpha)
# A complex example
# True parameter
alpha <- 4; vec.beta <- c(1, 2, 1, 0, -1); sigmasq <- 0.8; rho <- 0.6; radius <- 5
vec.par <- c(alpha, vec.beta, sigmasq, rho)
# Coordinate matrix
n.lati <- 30; n.long <- 30
n.site <- n.lati * n.long
mat.lattice <- cbind(rep(1:n.lati, n.long), rep(1:n.long, each=n.lati))
mat.dist <- as.matrix(dist(mat.lattice, upper=TRUE, diag=TRUE))
mat.cov <- sigmasq * rho^mat.dist
set.seed(1228)
# Generate regression (design) matrix with intercept
mat.X <- cbind(rep(1, n.site),scale(matrix(rnorm(n.site*(length(vec.beta)-1)),nrow=n.site)))
vec.Z <- t(chol(mat.cov)) %*% rnorm(n.site) + mat.X %*% vec.beta
vec.epsilon <- diag(sqrt(1-sigmasq), n.site) %*% rnorm(n.site)
vec.ylat <- as.numeric(vec.Z + vec.epsilon)
# Convert to the vector of observation
vec.yobs <- func.obs.prop(vec.ylat, alpha=alpha)