Title: | Words and Gestures to Words and Sentences Score Conversion |
Version: | 0.2.0 |
Description: | Convert MacArthur-Bates Communicative Development Inventory Words and Gestures scores to would-be scores on Words and Sentences, based on modeling from the Stanford Wordbank https://wordbank.stanford.edu/. See Day et al. (2025) <doi:10.1111/desc.70036>. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 3.5.0) |
LazyData: | true |
Suggests: | testthat (≥ 3.0.0), wordbankr (≥ 1.0) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-06-16 14:44:22 UTC; Trevor |
Author: | Trevor K.M. Day |
Maintainer: | Trevor K.M. Day <trevor.day@georgetown.edu> |
Repository: | CRAN |
Date/Publication: | 2025-06-17 07:20:01 UTC |
cdiWG2WS: Words and Gestures to Words and Sentences Score Conversion
Description
Convert MacArthur-Bates Communicative Development Inventory Words and Gestures scores to would-be scores on Words and Sentences, based on modeling from the Stanford Wordbank https://wordbank.stanford.edu/. See Day et al. (2025) doi:10.1111/desc.70036.
Author(s)
Maintainer: Trevor K.M. Day trevor.day@georgetown.edu (ORCID)
Predict category scores
Description
Predict category scores
Usage
cat_models_stripped
Format
An object of many linear models.
Linear models predicting WS category scores from WG score and age. The embedded data have been stripped from the object.
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
Predict Connecting Words scores (no age)
Description
Predict Connecting Words scores (no age)
Usage
cw_noage_stripped
Format
Linear model
A linear model predicting Connecting Words scores from other scores (no age). The embedded data have been stripped from the object.
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
Predict Connecting Words scores
Description
Predict Connecting Words scores
Usage
cw_stripped
Format
Linear model
A linear model predicting Connecting Words scores from other scores and age. The embedded data have been stripped from the objects.
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
WG dictionary: items, categories
Description
WG dictionary: items, categories
Usage
g_dict
Format
A data frame with 396 rows and 4 columns:
- category
Name of category
- item_definition
Item label, e.g. "baa baa"
- item_id
Unique ID
- item_kind
Type of item, only "word"
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
WS dictionary: items, categories
Description
WS dictionary: items, categories
Usage
s_dict
Format
A data frame with 680 rows and 4 columns:
- category
Name of category
- item_definition
Item label, e.g. "baa baa"
- item_id
Unique ID
- item_kind
Type of item, only "word"
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
Predict total score
Description
Predict total score
Usage
total_WG_to_WS_noage_stripped
Format
A linear model
A linear model predicting WS score from WG score (no age). The embedded data have been stripped from the object.
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
Predict total score (w/ age)
Description
Predict total score (w/ age)
Usage
total_WG_to_WS_stripped
Format
A linear model
A linear model predicting WS score from WG score and age. The embedded data have been stripped from the object.
References
Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 44(3), 677-694. doi:10.1017/S0305000916000209
Simulate WS category score from given WG score
Description
Take 22 WG scores and simulates WS scores for each one.
Usage
wg2ws_category_score(wg_table, age = NA, WG_total = NA, verbose = FALSE)
Arguments
wg_table |
A 22-row table with the columns |
age |
(Optional). Age in months. If unset, models not including age are used |
WG_total |
NA/numeric:
In the case of |
verbose |
T/F: Be verbose. |
Details
This function predicts simulated WS scores for each category score independently. If an age is not supplied, models not using age are used (less accurate than including age).
Value
New scores (data frame of 22 scores)
References
Day, T. K. M., Borovsky, A., Thal, D., & Elison, J. T. (2025). Modeling Longitudinal Trajectories of Word Production With the CDI. Developmental Science, 28(4), e70036. doi:10.1111/desc.70036
Examples
# Create list of words a child knows
words <- c("smile", "old", "chicken (animal)", "breakfast", "snow", "uh oh",
"please", "bad", "bicycle", "moon")
# Create table
wg_categories <- wg2ws_items(words)
# Convert to WS score
ws_categories <- wg2ws_category_score(wg_categories, age = 20)
Get function for category/age combination
Description
Returns a model object to predict category score given category and age.
Usage
wg2ws_get_cat_function(the_category, age = TRUE, echo_only = FALSE)
Arguments
the_category |
Which category to use, following Wordbank naming convention. Options: sounds, animals, vehicles, toys, food_drink, clothing, body_parts, household, furniture_rooms, outside, places, people, games_routines, action_words, descriptive_words, time_words, pronouns, question_words, locations, quantifiers, helping_verbs, connecting_words |
age |
T/F. If TRUE, return model that uses age as predictor. |
echo_only |
T/F. If FALSE, returns model as function; if TRUE echoes as human readable. |
Details
This is mostly an internal function, but is exposed in case somebody needs
it. Returns a lm()
object that has had the embedded data stripped, given
a category and whether to model age.
Value
Function or NULL
References
Day, T. K. M., Borovsky, A., Thal, D., & Elison, J. T. (2025). Modeling Longitudinal Trajectories of Word Production With the CDI. Developmental Science, 28(4), e70036. doi:10.1111/desc.70036
Examples
wg2ws_get_cat_function("time_words", age = TRUE)
List of items to category table
Description
Given a list of items, create a table of category scores
Usage
wg2ws_items(items, error_on_missing = TRUE, in_inside = "either")
Arguments
items |
List of WG items present for individual. |
error_on_missing |
If TRUE, check whether all items are actual WG
items. See helper function |
in_inside |
"In" and "inside" appear as two items on WG, but one ("inside/in") on WS. If "either," treat "inside/in" as endorsed if either appears. For "both", both must be endorsed. For "in" or "inside", treat "inside/in" as endorsed based solely on the presence of the indicated item. |
Details
Requires a list that exactly matches items as labeled from Wordbank
(check g_dict). Converts to a table of category scores, ready for use
with wg2ws_category_score()
.
Value
A data frame with 22 rows indicating item totals for all WS
categories. These values are not adjusted, and need to be adjusted with
wg2ws_category_score()
.
Examples
# Create list of words a child knows
words <- c("smile", "old", "chicken (animal)", "breakfast", "snow", "uh oh",
"please", "bad", "bicycle", "moon")
# Create table
categories <- wg2ws_items(words)
List instrument items
Description
List instrument items
Usage
wg2ws_list_items(instrument)
Arguments
instrument |
"WG" or "WS" |
Details
Simply list the items from each instrument for convenience.
Value
List of items
Examples
wg2ws_list_items("WG")
wg2ws_list_items("WS")
Summarize category table
Description
Summarize category table
Usage
wg2ws_summarize_cat(category_scores)
Arguments
category_scores |
A 22x2 category result table |
Details
Given a 22x2 category table, calculate total scores and lexical and syntax scores.
Value
A three column data frame, with total score, lexical, and syntactic scores
References
Day, T. K. M., & Elison, J. T. (2021). A broadened estimate of syntactic and lexical ability from the MB-CDI. Journal of Child Language, 49(3), 615-632. doi:10.1017/S0305000921000283
Examples
words <- c("smile", "old", "chicken (animal)", "breakfast", "snow", "uh oh",
"please", "bad", "bicycle", "moon")
categories <- wg2ws_items(words)
scores <- wg2ws_summarize_cat(categories)
Calculate WS total score from WG score.
Description
Calculate WS total score from WG score.
Usage
wg2ws_total_age(WG, age = NA)
Arguments
WG |
Words and Gestures total score. |
age |
Age in months (optional). A different, more accurate model is used if age is supplied. |
Details
Given a single number (WG total score) and optionally age, calculate a WG score.
Value
Adjusted score, rounded to the nearest integer. Does not return values below 0 or greater than 680.
References
Day, T. K. M., Borovsky, A., Thal, D., & Elison, J. T. (2025). Modeling Longitudinal Trajectories of Word Production With the CDI. Developmental Science, 28(4), e70036. doi:10.1111/desc.70036
Examples
wg2ws_total_age(200)
wg2ws_total_age(200, age = 21)