Package 'LightFitR'

July 25, 2025

```
Type Package
Title Design Complex Light Regimes
Version 1.0.0
Description A system for accurately designing complex light regimes using LEDs.
     Takes calibration data and user-defined target irradiances and it tells you
     what intensities to use.
     For more details see Vong et al. (2025) <doi:10.1101/2025.06.06.658293>.
License GPL (>= 3)
Encoding UTF-8
URL https://github.com/ginavong/LightFitR/
BugReports https://github.com/ginavong/LightFitR/issues
LazyData true
Depends R (>= 3.5)
Imports utils, graphics, lubridate, nnls, stringr
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Gina Vong [aut, cre, cph] (ORCID:
     <https://orcid.org/0000-0002-3913-7667>)
Maintainer Gina Vong <gywv500@york.ac.uk>
Repository CRAN
```

Date/Publication 2025-07-25 16:30:14 UTC

2 calibration

Contents

calib	oration ca	libration data	
Index			16
	write.helioSchedule		 15
	time_vector		 14
	~		
	-		
			 6
	ž –		
	_		
	checkRange		 3
	calibration		 2

Description

Example calibration data

Usage

calibration

Format

A data frame with 12 columns:

filename File that the raw data came from

time The time when a given measurement was taken

led LED channel being calibrated at that timepoint

intensity Intensity the light is set to

wavelength The wavelength this row describes

irradiance The irradiance measured at that wavelength by the spectrometer

Source

<a href="https://github.com/ginavong/2024_LightFitR_MethodsPaper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/data/heliospectra_measurements/calibration/Aportal-paper/blob/master/aportal-paper/blob/master/aportal-pap

checkRange 3

checkRange

Check that the intended irradiances are acheivable by the lights

Description

Check that the intended irradiances are acheivable by the lights

Usage

```
checkRange(
   intended_irradiance,
   calibration_leds,
   calibration_wavelengths,
   calibration_intensities,
   calibration_irradiances
)
```

Arguments

intended_irradiance

Matrix of intended irradiances to be checked. Each row corresponds to an LED channel.

calibration_leds

A numeric vector of LED values from calibration, mapping to intensities and irradiances (i.e. the same length)

calibration_wavelengths

A numeric vector of wavelengths from calibration, corresponding to intensities and irradiances

calibration_intensities

A numeric vector of intensities (heliospectra units) from calibration

calibration_irradiances

A numeric vector of measured irradiances (any units, as long as it is consistently used) from calibration

Value

```
Boolean: TRUE = pass, FALSE = fail
```

```
calib <- LightFitR::calibration
irradiances <- LightFitR::target_irradiance
checkRange(irradiances, calib$led, calib$wavelength, calib$intensity, calib$irradiance)</pre>
```

4 example_intensities

example_closest

closest intensities

Description

Matrix of closest intensities for example purposes. Generated from 'target_irradiance'

Usage

example_closest

Format

A matrix with 9 rows and 10 columns: each row represents an LED channel and each column represents an event

example_intensities

example intensities

Description

Matrix of random intensities for example purposes

Usage

example_intensities

Format

A matrix with 9 rows and 10 columns: each row represents an LED channel and each column represents an event

example_regime 5

example_regime

regime matrix

Description

Example regime matrix

Usage

```
example_regime
```

Format

A matrix with 13 rows and 10 columns:

time time in HH:MM:SS format

hour The hour of the event

minute The minute of the event second The second of the event

380nm Intensity at 380nm LED channel 400nm Intensity at 400nm LED channel

etc.

helio.checkFormat

Check formatting of the heliospectra matrices

Description

Heliospectra DYNA matrices should have 9 rows (1 for each LED channel) and up to 150 columns (max number of events that Heliospectra DYNA can store)

Usage

```
helio.checkFormat(check_matrix)
```

Arguments

check_matrix

Matrix to be checked. Rows correspond to LEDs and columns are events / timepoints.

Value

Vector of booleans: TRUE = pass, FALSE = fail

6 helio.disco

Examples

```
matrix_to_check <- LightFitR::target_irradiance
helio.checkFormat(target_irradiance)</pre>
```

helio.csv_schedule

Format regime_matrix for csv output that Heliospectra lights can parse

Description

Format regime_matrix for csv output that Heliospectra lights can parse

Usage

```
helio.csv_schedule(regime_matrix, filename)
```

Arguments

regime_matrix Matrix containing light regime, as generated by makeRegime

filename Character. Filename to export to

Value

Matrix formatted for Heliospectra lights csv

Examples

```
tempfile_name = tempfile(fileext='.csv')
helio.csv_schedule(LightFitR::example_regime, tempfile_name)
```

helio.disco

Turn Heliospectra into disco lights

Description

Congratulations! You've found the easter egg function!

Usage

```
helio.disco(filename, format = c("csv", "json"))
```

helio.dyna.leds 7

Arguments

filename Character. Filename to export to

format Character. Which format to export to? csv or json. Use extensions '.csv' or

'.txt'

Details

This writes a schedule for Heliospectra DYNA lights which randomly changes colour every second for a fun disco effect. The disco will last until the Heliospectra runs out of memory (150 events), so you can get 2 min 30s of disco out of your expensive lights... Enjoy!

Value

Disco schedule file for the heliospectra

Examples

```
tempfile_name = tempfile(fileext='.txt')
helio.disco(tempfile_name, format='json')
```

helio.dyna.leds

heliospectra DYNA LEDs

Description

Data about the heliospectra DYNA LED channels

Usage

```
helio.dyna.leds
```

Format

A data frame with 9 rows and 3 columns:

```
name Name of the LED channelwavelength Wavelength of the LED channelcolour Colour of the LED channel
```

Source

https://heliospectra.com/led-grow-lights/dyna/

8 helio.json_schedule

helio.eventLimit

Maximum number of events

Description

Maximum number of events programmable onto heliospectra

Usage

```
helio.eventLimit
```

Format

Integer representing maximum allowable events

helio.json_schedule Format regime

Format regime_matrix for json output that Heliospectra lights can parse

Description

Format regime_matrix for json output that Heliospectra lights can parse

Usage

```
helio.json_schedule(regime_matrix, filename)
```

Arguments

regime_matrix Matrix containing light regime, as generated by makeRegime

filename Character. Filename to export to

Value

Character in json format that Heliospectra can parse

```
tempfile_name = tempfile(fileext='.txt')
helio.csv_schedule(LightFitR::example_regime, tempfile_name)
```

internal.closestIntensities 9

```
internal.closestIntensities
```

Internal function. Find the intensities corresponding to the closest irradiance match between intended and calibration.

Description

Internal function. Find the intensities corresponding to the closest irradiance match between intended and calibration.

Usage

```
internal.closestIntensities(
  irradiance_matrix,
  calibration_df,
  peaks = LightFitR::helio.dyna.leds$wavelength
)
```

Arguments

Value

Matrix of closest intensities, in the same format as 'irradiance_matrix'

```
# Format calibration data correctly
calib <- LightFitR::calibration[, c(3, 5, 4, 6)]
# Run function
internal.closestIntensities(LightFitR::target_irradiance, calib)</pre>
```

10 makeRegime

makeRegime	Create a regime (matrix) to program lights to achieve intended irradi-
	ances

Description

This is a wrapper function that carries out multiple steps:

- 1. Calculate closest intensities
- 2. Predict the intensities to use to achieve the target irradiance (via a system of linear equations or non-negative least squares)
- 3. Tidy the intensities (rounding to integer, keep within the range of intensities that the lights can be set to)
- 4. Format the intensities and timestamps into a human-readable regime matrix

Usage

```
makeRegime(
   timeVector_POSIXct,
   irradiance_matrix,
   calibration_leds,
   calibration_wavelengths,
   calibration_intensities,
   calibration_irradiances,
   peaks = LightFitR::helio.dyna.leds$wavelength,
   method = "nnls"
)
```

Arguments

timeVector POSIXct

Vector of schedule timepoints in POSICxt format

irradiance_matrix

Matrix of intended irradiances. rows = leds and columns = events

calibration_leds

A numeric vector of LED values from calibration, mapping to intensities and irradiances (i.e. the same length)

calibration_wavelengths

A numeric vector of wavelengths from calibration, corresponding to intensities and irradiances

calibration_intensities

A numeric vector of intensities (heliospectra units) from calibration

calibration_irradiances

A numeric vector of measured irradiances (any units, as long as it is consistently

used) from calibration

peaks Vector of length 8 or 9. Containing wavelengths at which each LED peaks.

method Use 'nnls' (non-negative least squares) or 'sle' (system of linear equations)

nnls_intensities 11

Value

Matrix with light regime needed to program the lights

NNLS vs SLE

NNLS and SLE largely predict the same intensities, except in outlier cases. The default is NNLS, but if your predicted intensities end up being very far off, try SLE.

Examples

```
# Prep variables
calib <- LightFitR::calibration
times <- LightFitR::time_vector
target_irradiance <- LightFitR::target_irradiance

# Run function
makeRegime(times, target_irradiance, calib$led, calib$wavelength, calib$intensity, calib$irradiance)</pre>
```

nnls_intensities

Use non-linear least squares to interpolate intensities

Description

Use non-linear least squares to interpolate intensities

Usage

```
nnls_intensities(
  irradiance_matrix,
  closest_intensities,
  calibration_leds,
  calibration_wavelengths,
  calibration_intensities,
  calibration_irradiances,
  peaks = LightFitR::helio.dyna.leds$wavelength
)
```

Arguments

```
irradiance\_matrix
```

Matrix of intended irradiances. rows = leds and columns = events

closest_intensities

Matrix of closest intensities, generated by 'internal.closestIntensities'. Same format as 'irradiance_matrix'

12 read.helio_json

calibration_leds

A numeric vector of LED values from calibration, mapping to intensities and irradiances (i.e. the same length)

calibration_wavelengths

A numeric vector of wavelengths from calibration, corresponding to intensities and irradiances

calibration_intensities

A numeric vector of intensities (heliospectra units) from calibration

calibration_irradiances

A numeric vector of measured irradiances (any units, as long as it is consistently used) from calibration

peaks

Vector of length 8 or 9. Containing wavelengths at which each LED peaks.

Value

Matrix of intensities to set the lights to, to achieve desired irradiances

Examples

```
# Prep variables
target_irradiance = LightFitR::target_irradiance
closest = LightFitR::example_closest
calib = LightFitR::calibration

# Run the function
nnls_intensities(target_irradiance, closest,
    calib$led, calib$wavelength, calib$intensity, calib$irradiance)
```

read.helio_json

Read a heliospectra script (json format) into a matrix.

Description

Read a heliospectra script (json format) into a matrix.

Usage

```
read.helio_json(helio_script)
```

Arguments

helio_script File (.txt or .json) containing heliospectra regime script

Value

Matrix containing the regime encoded by the Heliospectra script

sle_intensities 13

Examples

```
example_file <- system.file("extdata", "example_json_schedule.txt",
  package = "LightFitR", mustWork = TRUE)
read.helio_json(example_file)</pre>
```

sle_intensities

Use a system of linear equations to calculate intensities

Description

Use a system of linear equations to calculate intensities

Usage

```
sle_intensities(
   irradiance_matrix,
   closest_intensities,
   calibration_leds,
   calibration_wavelengths,
   calibration_intensities,
   calibration_irradiances,
   peaks = LightFitR::helio.dyna.leds$wavelength
)
```

Arguments

irradiance_matrix

Matrix of intended irradiances. rows = leds and columns = events

closest_intensities

Matrix of closest intensities, generated by 'internal.closestIntensities'. Same format as 'irradiance_matrix'

calibration leds

A numeric vector of LED values from calibration, mapping to intensities and irradiances (i.e. the same length)

calibration_wavelengths

A numeric vector of wavelengths from calibration, corresponding to intensities and irradiances

calibration_intensities

A numeric vector of intensities (heliospectra units) from calibration

calibration_irradiances

A numeric vector of measured irradiances (any units, as long as it is consistently used) from calibration

peaks Vector of length 8 or 9. Containing wavelengths at which each LED peaks.

time_vector

Value

Matrix of intensities to set the lights to, to achieve desired irradiances

Examples

```
#' # Prep variables
target_irradiance = LightFitR::target_irradiance
closest = LightFitR::example_closest
calib = LightFitR::calibration

# Run the function
sle_intensities(target_irradiance, closest,
    calib$led, calib$wavelength, calib$intensity, calib$irradiance)
```

target_irradiance

target irradiances

Description

Matrix of random target irradiances for example purposes

Usage

```
target_irradiance
```

Format

A matrix with 9 rows and 10 columns: each row represents an LED channel and each column represents an event

time_vector

time vector

Description

Example timepoints for events

Usage

```
time_vector
```

Format

A vector of length 10 with timepoints in POSIXct format

write.helioSchedule 15

write.helioSchedule Write the schedule to file that Heliospectra can parse

Description

Writes to json or csv format

Usage

```
write.helioSchedule(regime_matrix, filename, format = c("csv", "json"))
```

Arguments

regime_matrix Matrix containing light regime, as generated by makeRegime

filename Character. Filename to export to

format Character. Which format to export to? csv or json. Use extensions '.csv' or

'.txt'

Value

Heliospectra schedule file in either the csv or json format

```
tempcsv_name = tempfile(fileext='.csv')
write.helioSchedule(LightFitR::example_regime, tempcsv_name, format='csv')
temptxt_name = tempfile(fileext='.txt')
write.helioSchedule(LightFitR::example_regime, temptxt_name, format='json')
```

Index

```
* datasets
    calibration, 2
    example_closest, 4
    example_intensities, 4
    example_regime, 5
    helio.dyna.leds, 7
    helio.eventLimit, 8
    target_irradiance, 14
    time_vector, 14
calibration, 2
checkRange, 3
example_closest, 4
{\tt example\_intensities, 4}
example_regime, 5
helio.checkFormat, 5
helio.csv_schedule, 6
helio.disco, 6
helio.dyna.leds, 7
helio.eventLimit, 8
helio.json_schedule, 8
internal.closestIntensities, 9
makeRegime, 10
nnls\_intensities, 11
read.helio_json, 12
sle_intensities, 13
target_irradiance, 14
time_vector, 14
write.helioSchedule, 15
```